Owing to their nanosized hollow cylindrical structure, CNTs hold the promise to be utilized as desired materials for encapsulating molecules which demonstrate wide inferences in drug delivery. Here we evaluate the possibility of drug release from the CNTs with various types and edge chemistry by reactive MD simulation to explain the scientifically reliable relations for proposed process. It was shown that heating of CNTs (up to 750 K) cannot be used for release of incorporated drug (phenylalanine) into water and even carbonated water solvent with very low boiling temperature. This is due to the strong physisorption (π-stacking interaction) between the aromatic of encapsulated drug and CNT sidewall which causes the drug to bind the nanotube sidewall. We have further investigated the interaction nature and release mechanism of water and drug confined/released within/from the CNTs by DFT calculations and the results confirmed our MD simulation findings. The accuracy of DFT method was also validated against the experimental and theoretical values at MP2/CCSD level. Therefore, we find that boiling of water/carbonated water confined within the CNTs could not be a suitable technique for efficient drug release. Our atomistic simulations provide a well-grounded understanding for the release of drug molecules confined within CNTs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498575PMC
http://dx.doi.org/10.1038/s41598-017-04981-2DOI Listing

Publication Analysis

Top Keywords

drug release
12
drug
9
confined cnts
8
release
6
cnts
6
water
5
molecular origin
4
origin drug
4
release water
4
water boiling
4

Similar Publications

Porous silicon (pSi) has gained substantial attention as a versatile material for various biomedical applications due to its unique structural and functional properties. Initially used as a semiconductor material, pSi has transitioned into a bioactive platform, enabling its use in drug delivery systems, biosensing, tissue engineering scaffolds, and implantable devices. This review explores recent advancements in macrostructural pSi, emphasizing its biocompatibility, biodegradability, high surface area, and tunable properties.

View Article and Find Full Text PDF

Regulation of Bone Remodeling by Metal-Phenolic Networks for the Treatment of Systemic Osteoporosis.

ACS Appl Mater Interfaces

January 2025

Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center of Biomedical Materials Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

Osteoporosis is a systemic metabolic disease that impairs bone remodeling by favoring osteoclastic resorption over osteoblastic formation. Nanotechnology-based therapeutic strategies focus on the delivery of drug molecules to either decrease bone resorption or increase bone formation rather than regulating the entire bone remodeling process, and osteoporosis interventions suffer from this limitation. Here, we present a multifunctional nanoparticle based on metal-phenolic networks (MPNs) for the treatment of systemic osteoporosis by regulating both osteoclasts and osteoblasts.

View Article and Find Full Text PDF

Bacterial bots are potent vehicles in cancer theranostics where bacteria are used typically as cargos for drug delivery. However, living bacteria themselves may aid in their efficiency in killing the tissues. For example, living bacteria may be functionalized with magnetic and luminescent nanoparticles along with drugs in order to achieve the targeted delivery and release of payloads that would include the bacteria.

View Article and Find Full Text PDF

Weight loss therapy and addiction: increased risk after bariatric surgery but reduced risk with GLP-1 receptor agonists.

Diabetes Metab

January 2025

Division of Diabetes, Nutrition and Metabolic Disorders, CHU Liège, Liège, Belgium; Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines (CIRM), Liège University, Liège, Belgium. Electronic address:

Background: Obesity is an increasing public health problem because of its high prevalence and associated morbidity and mortality. Two weight-loss strategies are currently used, either bariatric surgery or pharmacological therapy with glucagon-like peptide-1 receptor agonists (GLP-1RAs). Preclinical studies in rodents suggested an increased risk of additive disorders after bariatric surgery contrasting with a reduced risk with GLP-1RAs.

View Article and Find Full Text PDF

Background: Opioid use disorder (OUD) continues to pose a significant challenge to public health in the United States. Chronic pain and OUD are highly comorbid conditions, yet few studies have examined the relative associations of pain status and severity toward multidimensional OUD recovery outcomes (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!