The multi-domain transcriptional coactivators CBP/p300 integrate a multitude of signaling inputs, interacting with more than 400 proteins via one or more of their globular domains. While CBP/p300 function is typically considered in terms of these structured domains, about half of the protein consists of intrinsically disordered regions (IDRs) of varying length. However, these IDRs have only been thought of as linkers that allow flexible spatial arrangement of the structured domains, but recent studies have shown that similar IDRs mediate specific and critical interactions in other proteins. To examine the roles of IDRs in CBP, we performed yeast-two-hybrid screenings of placenta and lung cancer cDNA libraries, which demonstrated that the long IDR linking the KIX domain and bromodomain of CBP (termed ID3) can potentially bind to several proteins. The RNA-binding Zinc-finger protein 106 (ZFP106) detected in both libraries was identified as a novel substrate for CBP-mediated acetylation. Nuclear magnetic resonance (NMR) spectroscopy combined with cross-linking experiments and competition-binding assays showed that the fully disordered isolated ID3 transiently interacts with an IDR of ZFP106 in a fashion that disorder of both regions is maintained. These findings demonstrate that beside the linking function, ID3 can also interact with acetylation substrates of CBP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498717 | PMC |
http://dx.doi.org/10.1038/s41598-017-04611-x | DOI Listing |
Adv Sci (Weinh)
January 2025
School of Physics, Zhejiang University, Hangzhou, 310058, PR China.
The self-assembly of intrinsically disordered proteins (IDPs) into condensed phases and the formation of membrane-less organelles (MLOs) can be considered as the phenomenon of collective behavior. The conformational dynamics of IDPs are essential for their interactions and the formation of a condensed phase. From a physical perspective, collective behavior and the emergence of phase are associated with long-range correlations.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey.
NMDAR antagonists, such as memantine and ketamine, have shown efficacy in treating neurodegenerative diseases and major depression. The mechanism by which these drugs correct the aforementioned diseases is still unknown. Our study reveals that these antagonists significantly enhance 20S proteasome activity, crucial for degrading intrinsically disordered, oxidatively damaged, or misfolded proteins, factors pivotal in neurodegenerative diseases like Alzheimer's and Parkinson's.
View Article and Find Full Text PDFCell Rep
January 2025
Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Department of Applied Chemistry, National Chiayi University, Chiayi City 600, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 115, Taiwan. Electronic address:
The toxicity of C9ORF72-encoded polyproline-arginine (poly-PR) dipeptide is associated with its ability to disrupt the liquid-liquid phase separation of intrinsically disordered proteins participating in the formation of membraneless organelles, such as the nucleolus and paraspeckles. Amyotrophic lateral sclerosis (ALS)-related TAR DNA-binding protein 43 (TDP-43) also undergoes phase separation to form nuclear condensates (NCs) in response to stress. However, whether poly-PR alters the nuclear condensation of TDP-43 in ALS remains unclear.
View Article and Find Full Text PDFPaxillin (PXN) and focal adhesion kinase (FAK) are two major components of the focal adhesion complex, a multiprotein structure linking the intracellular cytoskeleton to the cell exterior. PXN interacts directly with the C-terminal targeting domain of FAK (FAT) via its intrinsically disordered N-terminal domain. This interaction is necessary and sufficient for localizing FAK to focal adhesions.
View Article and Find Full Text PDFPulsed Dipolar ESR Spectroscopy (PDS) is a uniquely powerful technique to characterize the structural property of intrinsically disordered proteins (IDPs) and polymers and the conformational evolution of IDPs and polymers, e.g. during assembly, by offering the probability distribution of segment end-to-end distances.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!