High prevalence of myeloid neoplasms in adults with non-Langerhans cell histiocytosis.

Blood

Service de Médecine Interne 2, Institut E3M, Centre de Références des Maladies Auto-Immunes et Systémiques Rares, Centre de Référence des Histiocytoses, Hôpital de la Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Pierre et Marie Curie, Paris, France.

Published: August 2017

Erdheim-Chester disease (ECD) is a rare non-Langerhans cell histiocytosis that most commonly affects adults and is driven by a high frequency of mutations in , , and kinases promoting MAPK signaling. Because of the relative rarity of ECD, key clinical features of the disease may not be well defined. Across a multi-institutional cohort of 189 patients with ECD and ECD overlapping with Langerhans cell histiocytosis (so-called mixed histiocytosis [MH]), we identified an unexpected and heretofore undescribed frequent occurrence of myeloid neoplasms among patients with ECD and MH. Some 10.1% (19/189) of patients with ECD have an overlapping myeloid neoplasm, most commonly occurring as a myeloproliferative neoplasm (MPN), myelodysplastic syndrome (MDS), or mixed MDS/MPN overlap syndrome (including chronic myelomonocytic leukemia). Consistent with this, molecular analysis frequently detected hallmark driver mutations of myeloid neoplasms (such as V617F and mutations) coexisting with those characteristic of histiocytosis (such as V600E and mutations). Histiocytosis patients diagnosed with a concomitant myeloid malignancy were significantly older at diagnosis and more commonly presented with MH than those without a myeloid malignancy. In some cases, the presence of distinct kinase mutations in the histiocytosis and myeloid neoplasm resulted in discordant and adverse responses to kinase-directed targeted therapies. These data highlight the clinical importance of evaluating adults with histiocytosis for a concomitant myeloid neoplasm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570678PMC
http://dx.doi.org/10.1182/blood-2017-01-761718DOI Listing

Publication Analysis

Top Keywords

myeloid neoplasms
12
cell histiocytosis
12
patients ecd
12
myeloid neoplasm
12
myeloid
8
non-langerhans cell
8
histiocytosis
8
ecd overlapping
8
mutations histiocytosis
8
concomitant myeloid
8

Similar Publications

[The impact of mitochondrial transfer on leukemia progression].

Sheng Li Xue Bao

December 2024

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.

The objective of the present study was to investigate the role and mechanism of bone marrow microenvironmental cells in regulating the mitochondrial mass of leukemia cells, and to uncover the mechanism of leukemia progression at the metabolic level. A mouse model of acute myeloid leukemia (AML) induced by the overexpression of the MLL-AF9 (MA9) fusion protein was established, and the bone marrow cells of AML mice were transplanted into mitochondrial fluorescence reporter mice expressing the Dendra2 protein (mito-Dendra2 mice). The proportion of Dendra2 cells in bone marrow leukemia cells at different stages of AML was quantified by flow cytometry.

View Article and Find Full Text PDF

Background: Venetoclax + azacitidine is a frontline treatment for older adult acute myeloid leukemia (AML) patients and a salvage therapy for relapsed/refractory patients who have been treated with intensive chemotherapy. While this is an important treatment option, many patients fail to achieve complete remission and of those that do, majority relapse. Leukemia stem cells (LSCs) are believed to be responsible for AML relapse and can be targeted through oxidative phosphorylation reduction.

View Article and Find Full Text PDF

The advent of immunotherapy represents a significant breakthrough in cancer treatment, with immune checkpoint inhibitors (ICIs) targeting PD-1 and CTLA-4 demonstrating remarkable therapeutic efficacy. However, patient responses to immunotherapy vary significantly, with immunosuppression within the tumor microenvironment (TME) being a critical factor influencing this variability. Immunosuppression plays a pivotal role in regulating cancer progression, metastasis, and reducing the success rates of immunotherapy.

View Article and Find Full Text PDF

Tumor initiation represents the first step in tumorigenesis during which normal progenitor cells undergo cell fate transition to cancer. Capturing this process as it occurs in vivo, however, remains elusive. Here we employ spatiotemporally controlled oncogene activation and tumor suppressor inhibition together with multiomics to unveil the processes underlying oral epithelial progenitor cell reprogramming into tumor initiating cells at single cell resolution.

View Article and Find Full Text PDF

Background: Anti-N-methyl-D-aspartate receptor encephalitis (anti-NMDARE) is a prevalent type of autoimmune encephalitis caused by antibodies targeting the NMDAR's GluN1 subunit. While significant progress has been made in elucidating the pathophysiology of autoimmune diseases, the immunological mechanisms underlying anti-NMDARE remain elusive. This study aimed to characterize immune cell interactions and dysregulation in anti-NMDARE by leveraging single-cell multi-omics sequencing technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!