The present study investigated the effects of microRNA-374 (miR-374) on human squamous cell carcinoma (SCC) cell proliferation, migration, invasion, and apoptosis through P53 signaling pathway by targeting growth arrest and DNA-damage-inducible protein 45 α (Gadd45a). Skin samples were collected from patients with skin SCC and normal skin samples. Expression of miR-374, Gadd45a, P53, P73, P16, c-myc, bcl-2, Bax, caspase-3, and caspase-9 were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. A431 and SCL-1 cells were divided into blank, negative control (NC), miR-374 mimics, miR374 inhibitors, siRNA-Gadd45a, and miR-374 inhibitors + siRNA-Gadd45a groups. Their proliferation, migration, invasion, cell cycle, and apoptosis were evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, scratch test, Transwell assay, and flow cytometry. SCC skin tissues exhibited decreased expression of miR-374, P73, P16, Bax caspase-3 and caspase-9, and increased levels of Gadd45a, P53, c-myc, and Bcl-2 compared with the normal skin tissues. The miR-374 inhibitors group exhibited decreased expression of miR-374, P73, P16, Bax caspase-3 and caspase-9, and increased expression of Gadd45a, P53, c-myc, and Bcl-2, enhanced cell proliferation, migration, and invasion, and reduced apoptosis compared with the blank and NC groups; the miR-374 mimics group followed opposite trends. Compared with the blank and NC groups, the miR-374 inhibitors + siRNA-Gadd45a group showed decreased miR-374 level; the siRNA-Gadd45a group showed elevated levels of P73, P16, Bax, caspase-3 and caspase-9, decreased levels of Gadd45a, P53, c-myc, and Bcl-2, reduced cell proliferation, migration, and invasion, and accelerated apoptosis. miR-374 induces apoptosis and inhibits proliferation, migration, and invasion of SCC cells through P53 signaling pathway by down-regulating Gadd45a.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6435473 | PMC |
http://dx.doi.org/10.1042/BSR20170710 | DOI Listing |
Appl Biochem Biotechnol
January 2025
Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital Affiliated to Tianjin Medical University, No.154 Heping Road to Anshan, Tianjin City, 300052, People's Republic of China.
Dysregulated circular RNAs (circRNAs) has been revealed to be involved in pulmonary fibrosis progression. Herein, this study focused on exploring the function and mechanism of circRNA Zinc Finger MYM-Type Containing 2 (circZMYM2) on idiopathic pulmonary fibrosis (IPF) using transforming growth factor (TGF)-β1-stimulated fibroblasts. Human fibroblast cell lines IMR-90 and HFL1 were stimulated with TGF-β1 to mimic fibrosis condition in vitro.
View Article and Find Full Text PDFHum Cell
January 2025
Institute of Translational Medicine, Medical College, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China.
Cancer, a complicated disease characterized by aberrant cellular metabolism, has emerged as a formidable global health challenge. Since the discovery of abnormal aldolase A (ALDOA) expression in liver cancer for the first time, its overexpression has been identified in numerous cancers, including colorectal cancer (CRC), breast cancer (BC), cervical adenocarcinoma (CAC), non-small cell lung cancer (NSCLC), gastric cancer (GC), hepatocellular carcinoma (HCC), pancreatic cancer adenocarcinoma (PDAC), and clear cell renal cell carcinoma (ccRCC). Moreover, ALDOA overexpression promotes cancer cell proliferation, invasion, migration, and drug resistance, and is closely related to poor prognosis of patients with cancer.
View Article and Find Full Text PDFHistol Histopathol
December 2024
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden.
Aim: Ovarian cancer (OC) is a fatal female malignant tumor that severely impacts the health of women worldwide. Due to the lack of diagnostic biomarkers, 70% of OC patients are considered in the advanced stage at the first diagnosis. Exploring novel biomarkers for OC diagnosis has become an urgent clinical need to address.
View Article and Find Full Text PDFChem Res Toxicol
January 2025
Department of Prenatal Diagnosis Center, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China.
The widespread use of perfluorooctanesulfonic acid (PFOS) has raised concerns regarding its potential on pregnant women, particularly in relation to the development of pre-eclampsia (PE). This study investigates the impact of PFOS exposure on the LncRNA/Rnd3 axis in pregnant mice and its association with trophoblast cell functions in PE. Bioinformatics analysis revealed PFOS-related gene alterations in PE, with pathways enriched in apoptotic signaling and cytokine interactions.
View Article and Find Full Text PDFMol Pharm
January 2025
Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China.
Numerous diseases, such as diabetic retinopathy and age-related macular degeneration, can lead to retinal neovascularization, which can seriously impair the visual function and potentially result in blindness. The presence of the blood-retina barrier makes it challenging for ocularly administered drugs to penetrate physiological barriers and reach the ocular posterior segments, including the retina and choroid. Herein, we developed an innovative bifunctional peptide, Tat-C-RP7, which exhibits excellent penetration capabilities and antiangiogenic properties aimed at treating retinal neovascularization diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!