A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Burkholderia endophyte of the ancient maize landrace Chapalote utilizes c-di-GMP-dependent and independent signaling to suppress diverse plant fungal pathogen targets. | LitMetric

Chapalote is a maize (corn) landrace grown continuously by subsistence farmers in the Americas since 1000 BC, valued in part for its broad-spectrum pathogen resistance. Previously, we showed that Chapalote possesses a bacterial endophyte, Burkholderia gladioli strain 3A12, which suppresses growth of Sclerotinia homoeocarpa, a fungal pathogen of a maize relative, used as a model system. Ten mutants that lost the anti-pathogen activities were identified, corresponding to five genes. However, S. homoeocarpa is not a known maize pathogen; hence, the relevance of these anti-fungal mechanisms to its ancient host has not been clear. Here, the strain 3A12 mutants were tested against a known pathogen of maize and many crops, Rhizoctonia solani. Microscopy established that wild-type 3A12 swarms towards, and attaches onto, the pathogen, forming microcolonies, resulting in hyphal cleavage. Analysis of the mutants revealed that 3A12 uses common downstream gene products (e.g. fungicides) to suppress the growth of both S. homoeocarpa and R. solani, but apparently different upstream regulatory machinery, with the former, but not latter pathogen, requiring YajQ, a receptor for the secondary messenger c-di-GMP. We conclude that B. gladioli strain 3A12, an endophyte of an ancient maize, employs both c-di-GMP-dependent and independent signaling to target diverse fungal pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsle/fnx138DOI Listing

Publication Analysis

Top Keywords

strain 3a12
12
endophyte ancient
8
ancient maize
8
c-di-gmp-dependent independent
8
independent signaling
8
fungal pathogen
8
gladioli strain
8
pathogen maize
8
pathogen
7
maize
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!