More recently, the biological colonization of stone heritage and consequently its biodeterioration has become the focus of numerous studies. Among all microorganisms, fungi are considered to be one of the most important colonizers and biodegraders on stone materials. This is why the development of new antifungal materials requires immediate action. ZnMgO nanoparticles (NPs) have several exciting applications in different areas, highlighting as an efficient antimicrobial agent for medical application. In this research, the application of Zn-doped MgO (MgZnO, x = 0.096) NPs obtained by sol-gel method as antifungal coatings on dolomitic and calcitic stones has been explored as a means to develop effective protective coatings for stone heritage. Moreover, the photocatalytic and antifungal activity of MgZnO NPs were comparatively studied with single ZnO and MgO NPs. Thus, compared to the MgO and ZnO nanomaterials, the MgZnO NPs exhibited an enhanced photocatalytic activity. After UV irradiation for 60 min, 87% methylene blue was degraded over Zn-doped MgO NPs, whereas only 58% and 38% of MB was degraded over ZnO and MgO NPs, respectively. These nanoparticles also displayed a better antifungal activity than that of single pure MgO or ZnO NPs, inhibiting the growth of fungi Aspergillus niger, Penicillium oxalicum, Paraconiothyrium sp., and Pestalotiopsis maculans, which are especially active in the bioweathering of stone. The improved photocatalytic and antifungal properties detected in the MgZnO NPs was attributed to the formation of crystal defects by the incorporation of Zn into MgO. The application of the MgO- and Zn-doped MgO NPs as protective coatings on calcareous stones showed important antifungal properties, inhibiting successfully the epilithic and endolithic colonization of A. niger and P. oxalicum in both lithotypes, and indicating a greater antifungal effectiveness on Zn-doped MgO NPs. The use of Zn-doped MgO NPs may thus represent a highly efficient antifungal protection for calcareous stone heritage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b06130 | DOI Listing |
J Photochem Photobiol B
January 2025
Department of Applied Science and Technology, A C Tech, Anna University, Chennai-600025, Tamil Nadu, India.
A novel method for synthesizing nanomaterials involves microbial or phytochemical nano-factories, which offer an eco-friendly, cost-effective, and reliable approach to producing clean and reproducible products. In this study, magnesium oxide nanoparticles (MgO NPs) were synthesized using Avicennia marina, a marine plant, as both a nucleation and stabilizing agent. The MgO NPs were characterized for crystallinity, cut-off wavelength, morphology, thermal stability, and surface properties using XRD, EDX, BET, UV-Visible spectroscopy, DLS, zeta potential analysis, SEM, TEM, TGA/DTA, and PL spectroscopy.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Chemical control of head blight (FHB) in wheat plants is often challenged by the resistance outbreak and deoxynivalenol (DON) accumulation. Developing green partners for fungicides is crucial for reducing fungal growth, mycotoxin contamination, and agricultural fungicides input. Herein, we investigated the mechanism of MgO nanoparticles (NPs) in controlling FHB.
View Article and Find Full Text PDFFront Bioeng Biotechnol
November 2024
Electronics and Nano Devices Lab, Faculty of Science, South Valley University, Qena, Egypt.
(neem) extract was used to biologically synthesize magnesium oxide nanoparticles (MgO NPs). The synthesized NPs were characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), and UV-vis spectroscopy. Antioxidant, anticancer, antibacterial, antidiabetic, and anti-inflammatory activities were analyzed for the synthesized MgO NPs and neem extract.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China. Electronic address:
The harmful influence caused by cadmium (Cd) to agriculture is severe and enduring. Efforts to reduce the damage by Cd to crop is an important topic. In this study, we investigated the effect of MgO NPs on tobacco seedlings' growth under Cd stress and explored its mechanism.
View Article and Find Full Text PDFSci Rep
November 2024
Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!