The aim of the present study was to examine how administration of a compound of 1,3,4- thiadiazine class 2-morpholino-5-phenyl-6H-1,3,4-thiadiazine, hydrobromide (L-17) with hypothermia inducing properties affects the brain metabolism. The mechanism by which L-17 induces hypothermia is unknown; it may involve hypothalamic central thermoregulation as well as act via inhibition of energy metabolism. We tested the hypothesis that L-17 may induce hypothermia by directly inhibiting energy metabolism. The study in vivo was carried out on Sprague-Dawley adult rats. Two doses of L-17 were administered (190 mg/kg and 760 mg/kg). Brain metabolites were analyzed in control and treated groups using magnetic resonance spectroscopy, along with blood flow rate measurements in carotid arteries and body temperature measurements. Further in vitro studies on primary cultures from rat hippocampus were carried out to perform a mitochondria function test of L-17 pre-incubation (100 μM, 30 min). Analysis of brain metabolites showed no significant changes in 190 mg/kg treated group along with a significant reduction in body temperature by 1.5°C. However, administration of L-17 in higher dose 760 mg/kg provoked changes in brain metabolites indicative of neurotoxicity as well as reduction in carotid arteries flow rate. In addition, a balance change of excitatory and inhibitory neurotransmitters was observed. The L-17 pre-incubation with cell primary cultures from rat brain showed no significant changes in mitochondrial function. The results obtained in the study indicate that acute administration of L-17 190 mg/kg in rats induces mild hypothermia with no adverse effects onto brain metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498073PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180739PLOS

Publication Analysis

Top Keywords

brain metabolism
12
190 mg/kg
12
brain metabolites
12
hypothermia inducing
8
inducing properties
8
properties brain
8
study vivo
8
l-17
8
energy metabolism
8
760 mg/kg
8

Similar Publications

L-carnitine protects against oxidative damage and neuroinflammation in cerebral cortex of rats submitted to chronic chemically-induced model of hyperphenylalaninemia.

Metab Brain Dis

January 2025

Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.

Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.

View Article and Find Full Text PDF

Modulation of Intestinal Inflammation and Protection of Dopaminergic Neurons in Parkinson's Disease Mice through a Probiotic Formulation Targeting NLRP3 Inflammasome.

J Neuroimmune Pharmacol

January 2025

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.

Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.

View Article and Find Full Text PDF

Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.

View Article and Find Full Text PDF

Metabolomics provide a promising tool for understanding dementia pathogenesis and identifying novel biomarkers. This study aimed to identify amino acid biomarkers for Alzheimer's Disease (AD) and Vascular Dementia (VD). By amino acid metabolomics, the concentrations of amino acids were determined in the serum of AD and VD patients as well as age-matched healthy controls.

View Article and Find Full Text PDF

Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!