Itch is an aversive somatic sense that elicits the desire to scratch. In animal models of itch, scratching behavior is frequently used as a proxy for itch, and this behavior is typically assessed through visual quantification. However, manual scoring of videos has numerous limitations, underscoring the need for an automated approach. Here, we propose a novel automated method for acoustic detection of mouse scratching. Using this approach, we show that chloroquine-induced scratching behavior in C57BL/6 mice can be quantified with reasonable accuracy (85% sensitivity, 75% positive predictive value). This report is the first method to apply supervised learning techniques to automate acoustic scratch detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5497976 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179662 | PLOS |
Sensors (Basel)
January 2025
College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China.
Underwater acoustic transducers need to expand the coverage of acoustic signals as much as possible in most ocean explorations, and the directivity indicators of transducers are difficult to change after the device is packaged, which makes the emergence angle of the underwater acoustic transducer limited in special operating environments, such as polar regions, submarine volcanoes, and cold springs. Taking advantage of the refractive characteristics of sound waves propagating in different media, the directivity indicators can be controlled by installing an acoustic lens outside the underwater acoustic transducer. To increase the detection range of an underwater acoustic transducer in a specific marine environment, a curvature-determining method for the diverging acoustic lens of an underwater acoustic transducer is proposed based on the acoustic ray tracing theory.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy.
This study investigates the potential of deploying a neural network model on an advanced programmable logic controller (PLC), specifically the Finder Opta™, for real-time inference within the predictive maintenance framework. In the context of Industry 4.0, edge computing aims to process data directly on local devices rather than relying on a cloud infrastructure.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Advanced Institute of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si 16229, Gyeonggi-do, Republic of Korea.
According to South Korea's Ministry of Employment and Labor, approximately 25,000 construction workers suffered from various injuries between 2015 and 2019. Additionally, about 500 fatalities occur annually, and multiple studies are being conducted to prevent these accidents and quickly identify their occurrence to secure the golden time for the injured. Recently, AI-based video analysis systems for detecting safety accidents have been introduced.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China.
This study addresses the challenges of electromagnetic interference and unstable signal transmission encountered by traditional sensors in detecting partial discharge (PD) within stator slots of large motors. A novel Extrinsic Fabry-Perot Interferometer (EFPI) sensor with a vibration-coupling air gap was designed to enhance the narrowband resonant detection sensitivity for PD ultrasonic signals by optimizing the diaphragm structure and coupling interface. The sensor features a quartz diaphragm with a thickness of 20 μM, an effective constrained radius of 0.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Hainan Institute, Zhejiang University, Sanya 572024, China.
In recent decades, Offshore Wind Turbines (OWTs) have become crucial to the clean energy transition, yet they face significant safety challenges due to harsh marine conditions. Key issues include blade damage, material corrosion, and structural degradation, necessitating advanced materials and real-time monitoring systems for enhanced reliability. Carbon fiber has emerged as a preferred material for turbine blades due to its strength-to-weight ratio, although its high cost remains a barrier.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!