A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Segmentation of Skeleton and Organs in Whole-Body CT Images via Iterative Trilateration. | LitMetric

Whole body oncological screening using CT images requires a good anatomical localisation of organs and the skeleton. While a number of algorithms for multi-organ localisation have been presented, developing algorithms for a dense anatomical annotation of the whole skeleton, however, has not been addressed until now. Only methods for specialised applications, e.g., in spine imaging, have been previously described. In this work, we propose an approach for localising and annotating different parts of the human skeleton in CT images. We introduce novel anatomical trilateration features and employ them within iterative scale-adaptive random forests in a hierarchical fashion to annotate the whole skeleton. The anatomical trilateration features provide high-level long-range context information that complements the classical local context-based features used in most image segmentation approaches. They rely on anatomical landmarks derived from the previous element of the cascade to express positions relative to reference points. Following a hierarchical approach, large anatomical structures are segmented first, before identifying substructures. We develop this method for bone annotation but also illustrate its performance, although not specifically optimised for it, for multi-organ annotation. Our method achieves average dice scores of 77.4 to 85.6 for bone annotation on three different data sets. It can also segment different organs with sufficient performance for oncological applications, e.g., for PET/CT analysis, and its computation time allows for its use in clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2017.2720261DOI Listing

Publication Analysis

Top Keywords

anatomical trilateration
8
trilateration features
8
bone annotation
8
anatomical
6
segmentation skeleton
4
skeleton organs
4
organs whole-body
4
whole-body images
4
images iterative
4
iterative trilateration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!