Tannery waste is a major environmental concern that needs proper management. Tannery solid waste (TSW) can be added to the soil as an organic amendment but needs metal removal. Chelant-assisted phytoremediation hastens the process of metal removal but also poses risk of leaching at the same time. This research evaluates Ethylenediaminetetraacetic acid (EDTA)-assisted phytoextraction and associated leaching hazard using metal-tolerant plants. Greenhouse trials were carried out with sunflower, spinach, and marigold using columns of uniform diameter packed with field soil and multimetal contamination of TSW (5% and 10%) with four EDTA doses. The amounts of metal absorbed or leached conformed to amounts in the soil amendment and the dose of EDTA. The mobilization of metals by EDTA was however metal-specific. The metals that were extracted in greater amounts by the plants were leached less compared to Cr and Cu. A significant amount of other metals was leached down and thus less amount was phytoextracted by the plants e.g. Cd and Ni. A high correlation was observed between the amount of metal absorbed by the plant and the amount in leachate except for Cr in all the plants. Antioxidant activities like SOD and catalase were also found to be high in sunflower and spinach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15226514.2017.1328391 | DOI Listing |
Appl Environ Microbiol
January 2025
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA.
Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes via extracellular electron transfer (EET). Unfortunately, developing genotype-phenotype relationships for electroactive organisms is challenging because EET is necessarily removed from the cell of origin. Microdroplet emulsions, which encapsulate individual cells in aqueous droplets, have been used to study a variety of extracellular phenotypes but have not been applied to investigate EET.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Environmental Protection Research Institute, Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China.
The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran.
In this research, activated carbon from banana peel (BPAC) was prepared by calcination (600 °C) method. Nano composites MO@BPAC (MO=NiO, CuO and ZnO) were prepared and then were characterized by XRD, FTIR, FESM, EDX, BETand TGA methods. Formation of MO@BPAC nanocomposites was confirmed by analysis methods.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, Institute of Technical Education and Research, Siksha 'O' Anusandhan Deemed to Be University Bhubaneswar-751030 Odisha India
The widespread use of neodymium-iron-boron (NdFeB) magnets has raised concerns about the environmental impact of their disposal, prompting the need for sustainable recycling strategies. Traditional solvents used in recycling are toxic and flammable, making them risky to use. Ionic liquids are safer and greener options with low vapor pressure, high stability, and less flammability.
View Article and Find Full Text PDFChemistry
January 2025
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991, Moscow, RUSSIAN FEDERATION.
Palladium catalysts form a cornerstone of modern chemistry with upmost scientific and industrial impact. Bulk palladium metal itself is chemically inert, and a sequence of chemical transformations has to be utilized to convert the metal into Pd pre-catalyst covered by ligands. However, the "cocktail" of catalysis concept discovered recently has shown that Pd systems can efficiently operate in catalysis without the necessity of a complicated and expensive pre-installed ligand environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!