Catalytically promiscuous enzymes are an attractive frontier for biochemistry, because enzyme promiscuities not only plausibly explain enzyme evolution through the mechanism of gene duplication but also could provide an efficient route to changing the catalytic function of proteins by mimicking this evolutionary process. PP1γ is an effectively promiscuous phosphatase for the hydrolysis of both monoanionic and dianionic phosphate ester-based substrates. In addition to its native phosphate monoester substrate, PP1γ catalyzes the hydrolysis of aryl methylphosphonates, fluorophosphate esters, phosphorothioate esters, and phosphodiesters, with second-order rate accelerations that fall within the narrow range of 10-10. In contrast to the different transition states in the uncatalyzed hydrolysis reactions of these substrates, PP1γ catalyzes their hydrolysis through similar transition states. PP1γ does not catalyze the hydrolysis of a sulfate ester, which is unexpected. The PP1γ active site is tolerant of variations in the geometry of bound ligands, which permit the effective catalysis even of substrates whose steric requirements may result in perturbations to the positioning of the transferring group, both in the initial enzyme-substrate complex and in the transition state. The conservative mutation of arginine 221 to lysine results in a mutant that is a more effective catalyst toward monoanionic substrates. The surprising conversion of substrate preference lends support to the notion that mutations following gene duplication can result in an altered enzyme with different catalytic capabilities and preferences and may provide a pathway for the evolution of new enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.7b00441 | DOI Listing |
J Cell Sci
January 2025
Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.
Pluripotent Stem Cells (PSCs) exhibit extraordinary differentiation potential and are thus highly valuable cellular model systems. However, while different PSC types corresponding to distinct stages of embryogenesis have been in common use, aspects of their cellular architecture and mechanobiology remain insufficiently understood. Here we investigated how the actin cytoskeleton is regulated in different pluripotency states.
View Article and Find Full Text PDFRecent Pat Anticancer Drug Discov
January 2025
Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, P.R. China.
Garlic has been consumed globally as a functional food and traditional medicine for various ailments. Its active organosulfur compounds (OSCs) have demonstrated significant anticancer properties, particularly against gastric cancer. However, a comprehensive review of these effects and the underlying molecular mechanisms, including their role in overcoming drug resistance, is currently lacking.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
Ultrafine droplets are crucial in materials processing and nanotechnology, with applications in nanoparticle preparation, water evaporation, nanodrug delivery, nanocoating, among numerous others. While the potential of turbulent gas flow to enhance liquid breakup is acknowledged, constructing turbulence-driven atomizers for ultrafine droplets remains challenging. Herein, we report the innovation of grid-turbulence atomization (GTA), which employs a rotating mesh to deliver liquid and an air knife to spray ultrafine droplets.
View Article and Find Full Text PDFJACS Au
January 2025
Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.
In this report, we describe the photoluminescence of a homoleptic uranium(IV) alkoxide complex. Excitation of [Li(THF)][U(O Bu)] leads to the first example of photoluminescence from a well-defined actinide complex originating from an f-f excitation, supported by second order multiconfigurational electronic structure calculations including spin-orbit coupling. These calculations show strong spin-orbit coupling between the excited triplet and singlet states for the 5f-orbital manifold, which leads to a long-lived excited state lifetime of 0.
View Article and Find Full Text PDFChem Sci
January 2025
School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
The process of proton translocation in , triggered by light, is powered by the photoisomerization of all--retinal in bacteriorhodopsin (bR). The primary events in bR involving rapid structural changes upon light absorption occur within subpicoseconds to picoseconds. While the three-state model has received extensive support in describing the primary events between the H and K states, precise characterization of each excited state in the three-state model during photoisomerization remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!