Herein, the coordination chemistry of a series of Cu(ii) complexes of various aminoalcohol and benzoate ligands was explored. The pH-dependent reactions of copper(ii) salts with propanolamine (Hpa), N-methyl diethanolamine (Hmdea), triethanolamine (Htea), and butyl-diethanolamine (Hbudea) were carried out in the presence of various benzoates (benzoic acid, 2-hydroxy benzoic acid, 4-hydroxy benzoic acid, 3-methoxy benzoic acid, and 4-methoxy benzoic acid). The resulting complexes [Cu(pa)(benzoate)] (1), [Cu(pa)(3-methoxybenzoate)] (2), [Cu(pa)(4-methoxybenzoate)] (3), [Cu(Htea)(benzoate)]·2HO (4), [Cu(Htea)(2-hydroxybenzoate)]·2HO (5), [Cu(Htea)(4-hydroxybenzoate)][Cu(Htea)]·2HO (6), [Cu(Hmdea)][benzoate] (7), [Cu(Hmdea)][4-methoxybenzoate] (8), [Cu(Hbdea)][2-hydroxybenzoate] (9), [Cu(benzoate)(benzoic acid)] (10), [Cu(4-methoxybenzoate)(CHCN)]·4CHCN (11) and [Cu(Htea)(benzoate)(NO)] (12) were formed as mono-, di- or trinuclear entities depending upon the pH conditions of the reaction. The complexes were characterized employing spectral, magnetic, single-crystal X-ray and DFT/TDDFT studies. 7 and 8 exhibited emission peaks at 510 and 460 nm, respectively, in the solid-state photoluminescence (PL) spectra. The temperature variable magnetic properties of 1-12 revealed the presence of antiferromagnetic (in 1-3 and 7-11) or ferromagnetic interactions (in 4-6 and 12) with Curie constants C = 0.24 (7), 0.28 (8) or 0.35 cm K mol (9) and Weiss constants θ = -0.34 (7), -0.32 (8) or -0.40 (9) K for the mononuclear complexes. The dinuclear complexes demonstrated J values of -89.2(2) (1), -71.1(3) (2), -59.6(1) (3), 98(1) (4), 79.1(2) (5), -85.4(2) (10) and -89.5(2) (11) cm. Strong ferromagnetic interactions were observed in the case of 6 (J = 172(3) cm and zJ' = 2.3(2) cm), which were comparable with those of 12 (J = 197(2) cm, J = -9.3(3) cm). A correlation exists between the Cu-O-Cu angle and magnetic coupling in di- and trinuclear Cu(ii) complexes. Moreover, 4-6 were active catalysts for the oxidation of 3,5-DTBC to 3,5-DTBQ and showed catecholase activity in the order 4 > 5 > 6 (K = 943 (4), 698 (5) and 553 h (6)). This order can be rationalized in terms of the electron density on the ligand, which neutralizes the effective positive charge on Cu(ii), thus forming the less or more stable intermediate. The order of catecholase activity and the electronic spectral properties of 4-6 were also investigated by DFT and TDDFT studies, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7dt01571bDOI Listing

Publication Analysis

Top Keywords

benzoic acid
20
cuii complexes
12
dft tddft
8
tddft studies
8
di- trinuclear
8
ferromagnetic interactions
8
catecholase activity
8
complexes
7
benzoic
5
acid
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!