Graphene inks are becoming widely popular. However the vast majority of these inks are formulated in polar solvents with high-boiling points. Their slow evaporation is a bottleneck factor in roll-to-roll printing processes. Here, we developed a highly-conductive fast-drying graphene ink in isooctane, a non-polar and low-boiling solvent. For this purpose, a diblock copolymer containing pendant cholesterol groups was used during the exfoliation of natural graphite in isooctane. The polymer develops non-covalent supramolecular interactions with the graphene conjugated system, resulting in the formation of stable graphene dispersions (up to c = 4 mg mL). These dispersions were used for direct writing on a variety of substrates, and were shown to dry instantly after application. The influence of polymer concentration on graphene characteristics, on colloidal stability and on electrochemical characteristics has been studied. The lowest sheet resistance (80 Ω □) was obtained when 23% of the graphene surface was covered by the polymer. In this case, the flakes were constituted of 2-5 graphene layers. More extensive exfoliation, down to single-layer graphene, was achieved at greater surface coverage, but led to inks with higher sheet resistance. Thus, by combining a tailored polymeric dispersant, a smooth exfoliation process and a low-boiling non-polar ink solvent, we were able to prepare highly-conductive fast-drying graphene inks which should have a high potentital for the development of roll-to-roll printed electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7nr01919j | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75080.
The highest sheet symmetry form of graphyne, with one triple bond between each neighboring hexagon in graphene, irreversibly transforms exothermically at ambient pressure and low temperatures into a nongraphitic, planar-sheet, zero-bandgap phase consisting of intrasheet-bonded sp carbons. The synthesis of this sp carbon phase is demonstrated, and other carbon phases are described for possible future synthesis from graphyne without breaking graphyne bonds. While measurements and theory indicate that the reacting graphyne becomes nonplanar because of sheet wrinkling produced by dimensional mismatch between reacted and nonreacted sheet regions, sheet planarity is regained when the reaction is complete.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
Capacitive dielectric temperature sensors based on polydimethylsiloxane (PDMS) loaded with 10 vol% of inexpensive, commercially-available conductive fillers including copper, graphite, and milled carbon fiber (PDMS-CF) powders are reported. The sensors are tested in the range of 20-110 °C and from 0.5 to 200 MHz, with enhanced sensitivity from 20 to 60 °C, and a relative response of 85.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Physics Postgraduate Program, Institute of Physics, University of Brasília, 70910-900 Brasília-DF, Brazil.
Two-dimensional (2D) nanomaterials are at the forefront of potential technological advancements. Carbon-based materials have been extensively studied since synthesizing graphene, which revealed properties of great interest for novel applications across diverse scientific and technological domains. New carbon allotropes continue to be explored theoretically, with several successful synthesis processes for carbon-based materials recently achieved.
View Article and Find Full Text PDFNanoscale
January 2025
School of Physics, Trinity College Dublin, Dublin 2, D02 PN40, Ireland.
Research into novel two-dimensional (2D) materials has boomed over the past decade, with a bewildering diversity of distinct properties being discovered. In this work, layered PtSe, grown by chemical vapor deposition and thermally converted to non-layered tetragonal PtSe, is experimentally and theoretically investigated. Notably, the resultant PtSe is distinctly metallic, which highlights the significance of sub-stoichiometric phases within transition metal dichalcogenide films.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Food Technology, College of Agriculture Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
Arsenic (As) contamination in groundwater has become a global concern, and it poses a serious threat to the health of millions of people. Groundwater with high As concentrations has been reported worldwide. It is widely recognized that the toxicity of As largely depends on its chemical forms, making As speciation a critical issue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!