AI Article Synopsis

  • The study introduces biogenic micromotors made from porous chalky tubes coated with Fe-Pt, designed for dual functions: creating metallic gold and quickly isolating it from reactions.
  • Once placed in a reactive environment, these micromotors use bubble propulsion to efficiently separate high-purity gold particles (which are yellow) from the mixture.
  • This innovative approach shows promise for sustainable metal recovery, extraction of micron-sized minerals, treatment of electronic waste, and separation of redox products.

Article Abstract

We report biogenic micromotor design consisting of porous chalky elongated tubes (∼60 μm length) coated with Fe-Pt for dual functionality i.e. metallic gold formation and rapid isolation. These autonomously propelled scavengers once introduced in the reaction environment, showed rapid bubble-propulsion followed by high-purity separation of the visually-distinguishable gold metal particles (yellow in colour) from the reaction mixture. The concept presented here has excellent potential towards environmentally sustainable metal recovery, micron-level metal/mineral particulate extraction, electronic waste treatment and similar redox product separation among others.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cc02605fDOI Listing

Publication Analysis

Top Keywords

autonomously propelled
8
metal recovery
8
propelled microscavengers
4
microscavengers precious
4
precious metal
4
recovery report
4
report biogenic
4
biogenic micromotor
4
micromotor design
4
design consisting
4

Similar Publications

Wake Detection and Positioning for Autonomous Underwater Vehicles Based on Cilium-Inspired Wake Sensor.

Sensors (Basel)

December 2024

State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.

This paper proposes a method for passive detection of autonomous underwater vehicle (AUV) wakes using a cilium-inspired wake sensor (CIWS), which can be used for the detection and tracking of AUVs. First, the characteristics of the CIWS and its working principle for detecting underwater flow fields are introduced. Then, a flow velocity sensor is used to measure the flow velocities of the "TS MINI" AUV's wake at different positions, and a velocity field model of the "TS MINI" AUV's wake is established.

View Article and Find Full Text PDF

Data-Oriented Octree Inverse Hierarchical Order Aggregation Hybrid Transformer-CNN for 3D Medical Segmentation.

J Imaging Inform Med

January 2025

Mechanical Engineering Department, Tianjin University, No. 135, Yaguan Road, Haihe Education Park, Jinnan District, Tianjin City, 300350, China.

The hybrid CNN-transformer structures harness the global contextualization of transformers with the local feature acuity of CNNs, propelling medical image segmentation to the next level. However, the majority of research has focused on the design and composition of hybrid structures, neglecting the data structure, which enhance segmentation performance, optimize resource efficiency, and bolster model generalization and interpretability. In this work, we propose a data-oriented octree inverse hierarchical order aggregation hybrid transformer-CNN (nnU-OctTN), which focuses on delving deeply into the data itself to identify and harness potential.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists have been exploring the therapeutic use of bacteria for over a century, and recent advancements in synthetic biology have led to the creation of genetically engineered bacteria that can intelligently respond to their environment.
  • These engineered bacteria can sense disease-specific signals and deliver targeted treatments by producing necessary proteins and drugs at diseased sites.
  • The article discusses three key stages in developing these bacteria for clinical use: choosing bacterial strains, designing their sensing systems, and planning how they will be delivered in medical applications for various diseases.
View Article and Find Full Text PDF

Self-propelled micro/nanomotors (MNMs) represent a groundbreaking advancement in precision drug delivery, offering potential solutions to persistent challenges such as systemic toxicity, limited bioavailability, and nonspecific distribution. By transforming various energy sources into mechanical motion, MNMs are able to autonomously navigate through complex physiological environments, facilitating targeted delivery of therapeutic agents to previously inaccessible regions. However, to achieve efficient in vivo drug delivery, biomedical MNMs must demonstrate their ability to overcome crucial physiological barriers encompassing mucosal surfaces, blood flow dynamics, vascular endothelium, and cellular membrane.

View Article and Find Full Text PDF

Living microorganisms can perform directed migration for foraging in response to a chemoattractant gradient. We report a biomimetic strategy that rotary FF-ATPase (adenosine triphosphatase)-propelled flasklike colloidal motors exhibit positive chemotaxis resembling the chemotactic behavior of bacteria. The streamlined flasklike colloidal particles are fabricated through polymerization, expansion, surface rupture, and re-polymerizing nanoemulsions composed of triblock copolymers and ribose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!