Generation of a Bag1 homozygous knockout mouse embryonic stem cell line using CRISPR/Cas9.

Stem Cell Res

MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, People's Republic of China; Chinese University of Hong Kong - University of Southampton Joint Laboratory for Regenerative Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, People's Republic of China. Electronic address:

Published: May 2017

Bag1 transcribes a multifunctional protein that participates in many important biological processes such as cell apoptosis, proliferation, differentiation and embryo development. Despite numerous published studies, the role of Bag1 in the context of embryonic stem (ES) cells, has not been explored. To investigate the function of Bag1 in ES cells, we generated mutant Bag1 ES cells using the CRISPR/Cas9 system. We established that the Bag1 double knockout ES cell line maintained their pluripotency, possessed a normal karyotype and the ability to differentiate into all three germ layers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2017.03.016DOI Listing

Publication Analysis

Top Keywords

embryonic stem
8
bag1 cells
8
bag1
5
generation bag1
4
bag1 homozygous
4
homozygous knockout
4
knockout mouse
4
mouse embryonic
4
stem cell
4
cell crispr/cas9
4

Similar Publications

Aurora B controls microtubule stability to regulate abscission dynamics in stem cells.

Cell Rep

January 2025

Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, 3584 CS Utrecht, the Netherlands. Electronic address:

Abscission is the last step of cell division. It separates the two sister cells and consists of cutting the cytoplasmic bridge. Abscission is mediated by the ESCRT membrane remodeling machinery, which also triggers the severing of a thick bundle of microtubules.

View Article and Find Full Text PDF

Identification of Cell Fate Determining Transcription Factors for Generating Brain Endothelial Cells.

Stem Cell Rev Rep

January 2025

Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, Leuven, 3000, Belgium.

Reliable models of the blood-brain barrier (BBB), wherein brain microvascular endothelial cells (BMECs) play a key role in maintenance of barrier function, are essential tools for developing therapeutics and disease modeling. Recent studies explored generating BMEC-like cells from human pluripotent stem cells (hPSCs) by mimicking brain-microenvironment signals or genetic reprogramming. However, due to the lack of comprehensive transcriptional studies, the exact cellular identity of most of these cells remains poorly defined.

View Article and Find Full Text PDF

Improvement in XIa Selectivity of Snake Venom Peptide Analogue BF9-N17K Using P2' Amino Acid Replacements.

Toxins (Basel)

January 2025

Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China.

Coagulation factor XIa is a new serine-protease family drug target for next-generation anticoagulants. With the snake venom Kunitz-type peptide BF9 as the scaffold, we obtained a highly active XIa inhibitor BF9-N17K in our previous work, but it also inhibited the hemostatic target plasmin. Here, in order to enhance the selectivity of BF9-N17K toward XIa, four mutants, BF9-N17K-L19A, BF9-N17K-L19S, BF9-N17K-L19D, and BF9-N17K-L19K, were further designed using the P2' amino acid classification scanning strategy.

View Article and Find Full Text PDF

Stem Cell Therapy for Diseases of Livestock Animals: An In-Depth Review.

Vet Sci

January 2025

Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India.

Stem cells are unique, undifferentiated cells that have the ability to both replicate themselves and develop into specialized cell types. This dual capability makes them valuable in the development of regenerative medicine. Current development in stem cell research has widened their application in cell therapy, drug discovery, reproductive cloning in animals, and cell models for various diseases.

View Article and Find Full Text PDF

(1) Background: Hepatoblastoma and medulloblastoma are two types of pediatric tumors with embryonic origins. Both tumor types can exhibit genetic alterations that affect the β-catenin and Wnt pathways; (2) Materials and Methods: This study used bioinformatics and integrative analysis of multi-omics data at both the tumor and single-cell levels to investigate two distinct pediatric tumors: medulloblastoma and hepatoblastoma; (3) Results: The cross-transcriptome analysis revealed a commonly regulated expression signature between hepatoblastoma and medulloblastoma tumors. Among the commonly upregulated genes, the transcription factor LEF1 was significantly expressed in both tumor types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!