Bag1 transcribes a multifunctional protein that participates in many important biological processes such as cell apoptosis, proliferation, differentiation and embryo development. Despite numerous published studies, the role of Bag1 in the context of embryonic stem (ES) cells, has not been explored. To investigate the function of Bag1 in ES cells, we generated mutant Bag1 ES cells using the CRISPR/Cas9 system. We established that the Bag1 double knockout ES cell line maintained their pluripotency, possessed a normal karyotype and the ability to differentiate into all three germ layers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scr.2017.03.016 | DOI Listing |
Cell Rep
January 2025
Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, 3584 CS Utrecht, the Netherlands. Electronic address:
Abscission is the last step of cell division. It separates the two sister cells and consists of cutting the cytoplasmic bridge. Abscission is mediated by the ESCRT membrane remodeling machinery, which also triggers the severing of a thick bundle of microtubules.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, Leuven, 3000, Belgium.
Reliable models of the blood-brain barrier (BBB), wherein brain microvascular endothelial cells (BMECs) play a key role in maintenance of barrier function, are essential tools for developing therapeutics and disease modeling. Recent studies explored generating BMEC-like cells from human pluripotent stem cells (hPSCs) by mimicking brain-microenvironment signals or genetic reprogramming. However, due to the lack of comprehensive transcriptional studies, the exact cellular identity of most of these cells remains poorly defined.
View Article and Find Full Text PDFToxins (Basel)
January 2025
Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China.
Coagulation factor XIa is a new serine-protease family drug target for next-generation anticoagulants. With the snake venom Kunitz-type peptide BF9 as the scaffold, we obtained a highly active XIa inhibitor BF9-N17K in our previous work, but it also inhibited the hemostatic target plasmin. Here, in order to enhance the selectivity of BF9-N17K toward XIa, four mutants, BF9-N17K-L19A, BF9-N17K-L19S, BF9-N17K-L19D, and BF9-N17K-L19K, were further designed using the P2' amino acid classification scanning strategy.
View Article and Find Full Text PDFVet Sci
January 2025
Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India.
Stem cells are unique, undifferentiated cells that have the ability to both replicate themselves and develop into specialized cell types. This dual capability makes them valuable in the development of regenerative medicine. Current development in stem cell research has widened their application in cell therapy, drug discovery, reproductive cloning in animals, and cell models for various diseases.
View Article and Find Full Text PDFCurr Oncol
January 2025
Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75006 Paris, France.
(1) Background: Hepatoblastoma and medulloblastoma are two types of pediatric tumors with embryonic origins. Both tumor types can exhibit genetic alterations that affect the β-catenin and Wnt pathways; (2) Materials and Methods: This study used bioinformatics and integrative analysis of multi-omics data at both the tumor and single-cell levels to investigate two distinct pediatric tumors: medulloblastoma and hepatoblastoma; (3) Results: The cross-transcriptome analysis revealed a commonly regulated expression signature between hepatoblastoma and medulloblastoma tumors. Among the commonly upregulated genes, the transcription factor LEF1 was significantly expressed in both tumor types.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!