Anaerobic antibiotic usage for pneumonia in the medical intensive care unit.

Respirology

Division of Pulmonary and Critical Care Medicine, Henry Ford Health System, Detroit, Michigan, USA.

Published: November 2017

Background And Objective: Pneumonia is a common admitting diagnosis in the intensive care unit (ICU). When aspiration is suspected, antibiotics to cover anaerobes are frequently used, but in the absence of clear risk factors, current guidelines have questioned their role. It is unknown how frequently these guidelines are followed.

Methods: We conducted a single-centre observational study on practice patterns of anaerobic antibiotic use in consecutive patients admitted to the ICU with aspiration pneumonia (Asp), community-acquired pneumonia (CAP) and healthcare-associated pneumonia (HCAP).

Results: A total of 192 patients were studied (Asp: 20, HCAP: 107, CAP: 65). Overall, 59 patients received anaerobic antibiotics (Asp: 90%, HCAP: 28%, CAP 17%) but a significant proportion of these patients did not meet criteria to receive them. Inappropriate anaerobic antibiotic use was 12/20 for Asp, 27/107 for HCAP and 9/65 for CAP. Mortality probability model III at zero hours (MPM0) score and a diagnosis of Asp were predictors of receiving inappropriate anaerobic antibiotics. Receiving inappropriate anaerobic antibiotics was associated with a longer ICU length of stay (LOS; 7 days (interquartile range (IQR): 7-21) vs 4 days (IQR:2-9), P = 0.017).

Conclusion: For patients in the ICU admitted with pneumonia, there is a high occurrence of inappropriately prescribed anaerobic antibiotics, the use of which was associated with a longer ICU LOS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7158857PMC
http://dx.doi.org/10.1111/resp.13111DOI Listing

Publication Analysis

Top Keywords

anaerobic antibiotics
16
anaerobic antibiotic
12
inappropriate anaerobic
12
intensive care
8
care unit
8
icu aspiration
8
receiving inappropriate
8
antibiotics associated
8
associated longer
8
longer icu
8

Similar Publications

Antibiotic resistome during two-stage partial nitritation/anammox process for sludge anaerobic digestion reject water treatment.

J Hazard Mater

December 2024

College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.

Anaerobic digestion (AD) reject water serves as a significant reservoir for antibiotic resistance genes (ARGs), underscoring the importance of understanding ARGs dynamics during treatment processes. Partial nitritation /anammox (PN/A) has become an increasingly adopted process, while comprehensive investigation on ARG behavior within this system, especially in full-scale, remains limited. This study explores the distribution of ARGs in a full-scale two-stage PN/A system, with an anaerobic/anoxic/oxic (AAO) system for comparison.

View Article and Find Full Text PDF

Systemic bile acid homeostasis plays an important role in human health. In this study, a physiologically based kinetic (PBK) model that includes microbial bile acid deconjugation and intestinal bile acid reuptake via the apical sodium-dependent bile acid transporter (ASBT) was applied to predict the systemic plasma bile acid concentrations in human upon oral treatment with the antibiotic tobramycin. Tobramycin was previously shown to inhibit intestinal deconjugation and reuptake of bile acids and to affect bile acid homeostasis upon oral exposure of rats.

View Article and Find Full Text PDF

Objectives: The increasing demand for alternatives to antibiotics against resistant bacteria has led to research on natural products. The aim of this study was to analyze the antimicrobial and antibiofilm activity of 16 Mediterranean herb extracts.

Materials And Methods: The extracts were analyzed using High Performance Thin Layer Chromatography.

View Article and Find Full Text PDF

Trimethoprim (TMP) and sulfamethoxazole (SMX) are bacteriostatic agents, which are co-administered to patients during infection treatment due to their synergetic effects. Once consumed, TMP and SMX end up in wastewater and are directed to municipal wastewater treatment plants (WWTPs) which fail to remove these contaminants from municipal wastewater. The discharge of WWTP effluents containing antibiotics in the environment is a major concern for public health as it contributes to the spread of antimicrobial resistance.

View Article and Find Full Text PDF

In-situ synthesis of FeS nanoparticles enhances Sulfamethoxazole degradation via accelerated electron transfer in anaerobic bacterial communities.

Water Res

December 2024

College of Water Sciences, Beijing Normal University, Beijing 100875, China; Beijing ENFI Environmental Protection Co., Ltd., Beijing, 100038, China.

The impact of nanominerals on microbial electron transfer and energy metabolism strategies during pollutant degradation remains uncertain. This study used in situ synthesized FeS nanoparticles (FeS NPs) to increase the degradation efficiency of SMX by anaerobic bacterial communities from 25.80 % to 47.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!