Human gut microbiome dysbiosis has been associated with the onset of metabolic diseases and disorders. However, the critical factors leading to dysbiosis are poorly understood. In this study, we provide increasing evidence of the association of diet type and body mass index (BMI) and how they relatively influence the taxonomic structure of the gut microbiota with respect to the causation of gut microbiome dysbiosis. The study included randomly selected Alabama residents (n = 81), including females (n = 45) and males (n = 36). The demographics data included age (33 ± 13.3 years), height (1.7 ± 0.11 meters), and weight (82.3 ± 20.6 kg). The mean BMI was 28.3 ± 7.01, equating to an overweight BMI category. A cross-sectional case-control design encompassing the newly recognized effect size approach to bioinformatics analysis was used to analyze data from donated stool samples and accompanying nutrition surveys. We investigated the microbiome variations in the Bacteroidetes-Firmicutes ratio relative to BMI, food categories, and dietary groups at stratified abundance percentages of <20%, 20%, 30%, 40%, 50%, 60%, and ≥70%. We further investigated variation in the Firmicutes and Bacteroidetes phyla composition (at the genus and species level) in relation to BMI, food categories, and dietary groups (Westernized or healthy). The Pearson Correlation coefficient as an indication of effect size across Alpha diversity indices was used to test the hypothesis (H ): increased BMI has greater effect on taxonomic diversity than Westernized diet type, (H ): increased BMI does not have a greater effect on taxonomic diversity than Westernized diet type. In conclusion, we rejected the (H ) as our results demonstrated that Westernized diet type had an effect size of 0.22 posing a greater impact upon the gut microbiota diversity than an increased BMI with an effect size of 0.16. This implied Westernized diet as a critical factor in causing dysbiosis as compared to an overweight or obese body mass index.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552927 | PMC |
http://dx.doi.org/10.1002/mbo3.476 | DOI Listing |
Am J Gastroenterol
December 2024
Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden.
Background And Aims: Oral microbiota may contribute to the development of upper gastrointestinal (UGI) disorders. We aimed to study the association between the microbiome of saliva, subgingival and buccal mucosa, and UGI disorders, particularly precancerous lesions. We also aimed to determine which oral site might serve as the most effective biomarker for UGI disorders.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaan'xi, China.
Increasing evidence suggests that dysbiosis of gut microbiota exacerbates chronic kidney disease (CKD) progression. Curcumin (CUR) has been reported to alleviate renal fibrosis in animal models of CKD. However, the relationship between CUR and gut microbiome in CKD remains unclear.
View Article and Find Full Text PDFPLoS One
January 2025
Fujian Key Laboratory of Lung Stem Cells, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
Introduction: Pulmonary fibrosis (PF) is a chronic and irreversible interstitial lung disease characterized by a lack of effective therapies. Mesenchymal stem cells (MSCs) have garnered significant interest in the realm of lung regeneration due to their abundant availability, ease of isolation, and capacity for expansion. The objective of our study was to investigate the potential therapeutic role of umbilical cord-derived MSCs (UC-MSCs) in the management of PF, with a focus on the alterations in the gut microbiota and its metabolites during the use of UC-MSCs for the treatment of pulmonary fibrosis, as well as the possible mechanisms involved.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Respiratory Medicine in Zhejiang Hospital, Hangzhou, Zhejiang Province, China.
Objectives: The aim of the study was to explore the alteration of microbiota and SCFA in gut and inflammation in acute exacerbation chronic obstructive pulmonary disease (AECOPD) patients, and to test the hypothesis that a disorder of gut microbiota will lead to the alteration of SCFA, which will aggravate inflammation in AECOPD patients.
Methods And Results: 24 patients with AECOPD and 18 healthy volunteers were included in the study. Gut microbiota were analyzed by 16S rDNA and serum was used to detect levels of inflammatory factors by ELISA.
Transl Vis Sci Technol
January 2025
Department of Otolaryngology & Head and Neck Surgery, Wuhan No.1 Hospital, Wuhan, Hubei, China.
Purpose: Previous researches have suggested an important association between gut microbiota (GM) and vascular pathologies such as atherosclerosis. This study aimed to explore the association between 196 GM taxa and retinal vein occlusion (RVO).
Methods: This study used Mendelian randomization (MR), linkage disequilibrium score regression (LDSC), and polygenic overlap analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!