Comparison of impact of two decontamination solutions on the viability of the cells in human amnion.

Cell Tissue Bank

Laboratory of the Biology and Pathology of the Eye, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 128 08, Prague, Czech Republic.

Published: September 2017

Human amniotic membrane (HAM) is used as an allograft in regenerative medicine or as a source of pluripotent cells for stem cell research. Various decontamination protocols and solutions are used to sterilize HAM before its application, but little is known about the toxicity of disinfectants on HAM cells. In this study, we tested two decontamination solutions, commercial (BASE·128) and laboratory decontamination solution (LDS), with an analogous content of antimycotic/antibiotics for their cytotoxic effect on HAM epithelial (EC) and mesenchymal stromal cells (MSC). HAM was processed in a standard way, placed on nitrocellulose scaffold, and decontaminated, following three protocols: (1) 6 h, 37 °C; (2) 24 h, room temperature; (3) 24 h, 4 °C. The viability of EC was assessed via trypan blue staining. The apoptotic cells were detected using terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). The mean % (±SD) of dead EC (%DEC) from six fresh placentas was 12.9 ± 18.1. Decontamination increased %DEC compared to culture medium. Decontamination with BASE·128 for 6 h, 37 °C led to the highest EC viability (81.7%). Treatment with LDS at 24 h, 4 °C resulted in the lowest EC viability (55.9%) in the set. MSC were more affected by apoptosis than EC. Although the BASE·128 expresses lower toxicity compared to LDS, we present LDS as an alternative decontamination solution with a satisfactory preservation of cell viability. The basic formula of LDS will be optimised by enrichment with nutrient components, such as glucose or vitamins, to improve cell viability.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10561-017-9636-3DOI Listing

Publication Analysis

Top Keywords

decontamination solutions
8
decontamination solution
8
6 h 37 °c
8
24 h 4 °c
8
cell viability
8
decontamination
7
viability
6
cells
5
ham
5
lds
5

Similar Publications

Chemistry for water treatment under nanoconfinement.

Water Res

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China.

The global freshwater crisis, exacerbated by escalating pollution, poses a significant threat to human health. Addressing this challenge required innovative strategies to develop highly efficient and process-adaptable materials for water decontamination. In this regard, nanomaterials with confinement structures have emerged as a promising solution, outperforming traditional nanomaterials in terms of efficiency, selectivity, stability, and process adaptability, thereby serving as an ideal platform for designing novel functional materials for sustainable water treatment.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) in species, particularly and , poses a significant public health threat. These bacteria, which are commonly found in livestock, poultry, companion animals, and wildlife, are the leading causes of foodborne illnesses, often transmitted through contaminated poultry. Extensive exposure to antibiotics in human and veterinary medicine creates selection pressure, driving resistance through mechanisms such as point mutations, horizontal gene transfer, and efflux pumps.

View Article and Find Full Text PDF

Augmented carbon utilization and ammonia assimilation in heterotrophic microorganism under magnetic field stimulation.

Environ Res

January 2025

School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China. Electronic address:

Ammonia assimilation is crucial in microbial nitrogen metabolism, and researching the impact of magnetic field (MF) on heterotrophic ammonia assimilation (HAA) contributes to improving nitrogen utilization and environmental remediation. This study systematically investigated the profound effects of MF stimulation on carbon and ammonia assimilation mechanisms in heterotrophic microorganisms. The dynamic responses of microbial carbon source metabolic efficiency and nitrogen source assimilation rates were quantitatively analyzed by designing a multidimensional stimulation environment of different nutrient levels (C/N 20, 25, 30) and MF intensities (0, 1, 20 mT).

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS)-containing firefighting foam have been used in stationary fire suppression systems for several decades. However, there is a lack of research on how to decontaminate PFAS-contaminated infrastructure and evaluate treatment efficiency. This study assessed the removal of PFAS from stainless steel pipe surfaces using different cleaning agents (tap water, methanol, and aqueous solutions containing 10 and 20 wt % of butyl carbitol (BC)) at different temperatures (20 °C, 40 °C, and 70 °C).

View Article and Find Full Text PDF

Effective decontamination of hospital surfaces is crucial to protect workers from antineoplastic drugs (ADs) since dermal absorption is the main exposure route to these hazardous medicinal products. Sampling after daily cleaning in oncologic settings from a tertiary hospital was initially performed and exhibited low contamination levels; however, cyclophosphamide was still found (up to 957 pg/cm) above the guidance value (100 pg/cm) in four locations, evidencing the need to properly assess and update the cleaning protocols. Then, cleaning efficiencies of six solutions and different protocols were evaluated (including, for the first time, four commercial cleaning solutions/disinfectants not designed specifically for AD removal) after deliberate contamination of three model surfaces with 13 pharmaceuticals: bicalutamide, capecitabine, cyclophosphamide, cyproterone, doxorubicin, etoposide, flutamide, ifosfamide, imatinib, megestrol, mycophenolate mofetil, paclitaxel, and prednisone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!