Recent studies claim that the perception of flashes of light (i.e., phosphenes) can be induced by stimulation of higher visual areas, including parietal cortex, suggesting a critical role of these regions in generating visual percepts. In this study, we show that transcranial magnetic stimulation (TMS) of even the vertex can induce phosphenes, but that their neural origins are likely to be a consequence of current spread into visual areas (e.g., retina or visual cortex). After vertex stimulation, subjects with smaller head circumferences-for whom the distances from the coil to retina and visual cortex are smaller-report a two-fold increase in perceiving phosphenes. In contrast, both smaller and larger headed individuals perceived phosphenes equivalently and on nearly all trials following TMS of early visual cortex. These results demonstrate a critical role of early visual areas but not higher ones in generating visual perceptions. These findings further suggest that phosphenes perceived from TMS of the vertex or parietal cortex arise from induced activity in the retina or nearby early visual cortex and warn against the use of the vertex as a control site for TMS experiments of visual perception.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-017-5022-4DOI Listing

Publication Analysis

Top Keywords

visual cortex
20
visual areas
12
early visual
12
visual
10
transcranial magnetic
8
magnetic stimulation
8
parietal cortex
8
critical role
8
generating visual
8
tms vertex
8

Similar Publications

Visual hallucinations (VH) and pareidolia, a type of minor hallucination, share common underlying mechanisms. However, the similarities and differences in their brain regions remain poorly understood in Parkinson's disease (PD). A total of 104 drug-naïve PD patients underwent structural MRI and were assessed for pareidolia using the Noise Pareidolia Test (NPT) were enrolled.

View Article and Find Full Text PDF

Patients with major depressive disorder (MDD) and borderline personality disorder (BPD) are reported to have disrupted autobiographical memory (AM). Using functional magnetic resonance imaging we investigated behavioral and neural processing of the recall of emotional (sad and happy) memories in 30 MDD, 18 BPD, and 34 healthy control (HC) unmedicated women. The behavioral results showed that the MDD group experienced more sadness than the HC after the sad recall, while BPD participants experienced less happiness than HC after the happy recall.

View Article and Find Full Text PDF

Integrating spatial and temporal information is essential for our sensory experience. While psychophysical evidence suggests spatial dependencies in duration perception, few studies have directly tested the neural link between temporal and spatial processing. Using ultra-high-field functional MRI and neuronal-based modeling, we investigated how and where the processing and the representation of a visual stimulus duration is linked to that of its spatial location.

View Article and Find Full Text PDF

Background: Tractography allows the in vivo study of subcortical white matter, and it is a potential tool for providing predictive indices on post-operative outcomes. We aim at establishing whether there is a relation between cognitive outcome and the status of the inferior fronto-occipital fasciculus's (IFOF's) microstructure.

Methods: The longitudinal neuropsychological data of thirty young (median age: 35 years) patients operated on for DLGG in the left temporo-insular cortex along with pre-surgery tractography data were processed.

View Article and Find Full Text PDF

Structural-functional connectivity decoupling in multiscale brain networks in Parkinson's disease.

BMC Neurosci

December 2024

The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China.

Background: Parkinson's disease (PD) is a progressive neurodegenerative disease associated with functional and structural alterations beyond the nigrostriatal dopamine projection. However, the structural-functional (SC-FC) coupling changes in combination with subcortical regions at the network level are rarely investigated in PD.

Methods: SC-FC coupling networks were systematically constructed using the structural connectivity obtained by diffusion tensor imaging and the functional connectivity obtained by resting-state functional magnetic resonance imaging in 53 PD and 72 age- and sex-matched healthy controls (HCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!