By combining interfacial nanoparticles and molecular surfactants together with immiscible liquids of high viscosity, we develop an alternative strategy for creating bicontinuous interfacially jammed emulsion gels (bijels). These bijels are prepared from common ingredients which are widely used in industry: glycerol, silicone oil, silica nanoparticles together with cetyltrimethylammonium bromide (CTAB) surfactant. We tune the sample composition and develop a multi-step mixing protocol to achieve a tortuous arrangement of liquid domains. We show that the nanoparticle location changes from one of the phases to the interface during mixing. The changes in both the microscopic and macroscopic sample configuration after a waiting time of months were assessed. In order for the structure to have long-term stability we find that the densities of the two phases must be similar which we achieved by filling one of the phases with nanoparticle-stabilised droplets of the other. This work paves the way to the production of bijels using fully immiscible liquids and hence their exploitation in many application areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7sm00897j | DOI Listing |
Unlabelled: Compartmentalization of the nucleus into heterochromatin and euchromatin is highly conserved across eukaryotes. Constitutive heterochromatin (C-Het) constitutes a liquid-like condensate that packages the repetitive regions of the genome through the enrichment of histone modification H3K9me3 and recruitment of its cognate reader protein Heterochromatin Protein-1 (HP1a). The ability for well-ordered nucleosome arrays and HP1a to independently form biomolecular condensates suggests that the emergent material properties of C-Het compartments may contribute to its functions such as force-buffering, dosage-dependent gene silencing, and selective permeability.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
State Key Laboratory of High-Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 210008, China.
A novel class of SiO aerogel-based resin composite with a self-formed foamy structure and an extremely low thermal conductivity, as well as excellent fire resistance, was fabricated via a room temperature and atmospheric pressure route. The self-formed foamy structure was achieved by utilizing SiO aerogel particles not only as a thermal insulative functional additive filler but also as nano-sized solid particles in a Picking emulsion system, adjusting the surface tension as a stabilizer at the interface between the two immiscible phases (liquid and air in this case). The results of foamy structure analyses via scanning electron microscopy, micro-CT, and N adsorption-desorption isotherms validate the successful generation of a micro-scale porous structure with the enhancement of the aerogel nano-scale solid particles at the wall as a stabilizer.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Mathematics, National Institute of Technology Durgapur, Durgapur-713209, India.
The present article deals with the modulation of oscillatory electroosmotic flow (EOF) and solute dispersion across a nanochannel filled with an electrolyte solution surrounded by a layer of a dielectric liquid. The dielectric permittivity of the liquid layer adjacent to supporting rigid walls is taken to be lower than that of the electrolyte solution. Besides, the aforesaid liquid layer may bear additional mobile charges, , free lipid molecules, charged surfactant molecules , which in turn lead to a nonzero charge along the liquid-liquid interface.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, Sofia 1164, Bulgaria.
Spontaneous bubble growths in liquids are usually triggered by rapid changes in pressure or temperature that can lead to liquid gas supersaturation. Here, we report alternative scenarios of the spontaneous growths of bubbles inside a high-saturation-vapor-pressure and high-air-solubility perfluorocarbon liquid (PP1) that were observed under ambient quiescent conditions. First, we investigate spontaneous bubble growth inside the single PP1 phase, which was left to evaporate freely.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Laoshan Laboratory, Qingdao 266237, China.
Nucleation of multicomponent systems is a pervasive phenomenon in nature and is pertinent to a diverse array of scientific and industrial challenges. The nucleation mechanisms of immiscible multicomponent systems remain unclear. Here, gas hydrate is employed as a model system to study the nucleation of multicomponent systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!