FNDC5/irisin, has recently been identified as a novel protein that stimulates the "browning" of white adipose by inducing thermogenesis via increased uncoupling protein 1 (UCP1). We tested the hypothesis that high fat diet-induced prediabetic mice would exhibit increased FNDC5 and this effect would be attenuated by chronic exercise. C57BL/6 mice were randomized into three groups for the 4 week intervention: Standard diet (Std, =12), High fat diet (HF, =14), or High fat diet and free access to a running wheel (HFEX, =14). Body weight, glucose, insulin, and the homeostatic model assessment of insulin resistance (HOMA-IR) were greater in HF compared to Std and HFEX after the 4 week intervention. In support of our hypothesis, FNDC5 was higher in HF in both skeletal muscle and adipose compared to Std and was lower in adipose only in HFEX compared to HF mice. Following the same pattern, PGC-1 was significantly higher in HF compared to Std in skeletal muscle and significantly lower in HFEX compared to HF in adipose. UCP1 was significantly lower in HFEX versus Std (in skeletal muscle) and versus HF (in adipose). HOMA-IR was significantly correlated with FNDC5 protein levels in adipose. Increased FNDC5 in adipose and skeletal muscle may be a compensatory mechanism to offset high fat diet-induced weight gain and insulin resistance by increasing energy expenditure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506519PMC
http://dx.doi.org/10.14814/phy2.13319DOI Listing

Publication Analysis

Top Keywords

high fat
16
skeletal muscle
16
increased fndc5
12
insulin resistance
12
compared std
12
fat diet-induced
8
4 week intervention
8
fat diet
8
hfex compared
8
std skeletal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!