Inferring synaptic excitation/inhibition balance from field potentials.

Neuroimage

Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA; Institute for Neural Computation, University of California, San Diego, La Jolla, CA, USA; Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA.

Published: September 2017

Neural circuits sit in a dynamic balance between excitation (E) and inhibition (I). Fluctuations in E:I balance have been shown to influence neural computation, working memory, and information flow, while more drastic shifts and aberrant E:I patterns are implicated in numerous neurological and psychiatric disorders. Current methods for measuring E:I dynamics require invasive procedures that are difficult to perform in behaving animals, and nearly impossible in humans. This has limited the ability to examine the full impact that E:I shifts have in cognition and disease. In this study, we develop a computational model to show that E:I changes can be estimated from the power law exponent (slope) of the electrophysiological power spectrum. Predictions from the model are validated in published data from two species (rats and macaques). We find that reducing E:I ratio via the administration of general anesthetic in macaques results in steeper power spectra, tracking conscious state over time. This causal result is supported by inference from known anatomical E:I changes across the depth of rat hippocampus, as well as oscillatory theta-modulated dynamic shifts in E:I. Our results provide evidence that E:I ratio may be inferred from electrophysiological recordings at many spatial scales, ranging from the local field potential to surface electrocorticography. This simple method for estimating E:I ratio-one that can be applied retrospectively to existing data-removes a major hurdle in understanding a currently difficult to measure, yet fundamental, aspect of neural computation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2017.06.078DOI Listing

Publication Analysis

Top Keywords

neural computation
8
inferring synaptic
4
synaptic excitation/inhibition
4
excitation/inhibition balance
4
balance field
4
field potentials
4
potentials neural
4
neural circuits
4
circuits sit
4
sit dynamic
4

Similar Publications

Organic fertilizers have been identified as a sustainable agricultural practice that can enhance productivity and reduce environmental impact. Recently, the European Union defined and accepted insect frass as an innovative and emerging organic fertilizer. In the wider domain of organic fertilizers, mathematical and computational models have been developed to optimize their production and application conditions.

View Article and Find Full Text PDF

Co-active or temporally ordered neural ensembles are a signature of salient sensory, motor, and cognitive events. Local convergence of such patterned activity as synaptic clusters on dendrites could help single neurons harness the potential of dendritic nonlinearities to decode neural activity patterns. We combined theory and simulations to assess the likelihood of whether projections from neural ensembles could converge onto synaptic clusters even in networks with random connectivity.

View Article and Find Full Text PDF

(1) Background: At present, the bio-inspired visual neural models have made significant achievements in detecting the motion direction of the translating object. Variable contrast in the figure-ground and environmental noise interference, however, have a strong influence on the existing model. The responses of the lobula plate tangential cell (LPTC) neurons of Drosophila are robust and stable in the face of variable contrast in the figure-ground and environmental noise interference, which provides an excellent paradigm for addressing these challenges.

View Article and Find Full Text PDF

Artificial Visual System for Stereo-Orientation Recognition Based on Hubel-Wiesel Model.

Biomimetics (Basel)

January 2025

Institute of AI for Industries, Chinese Academy of Sciences, 168 Tianquan Road, Nanjing 211100, China.

Stereo-orientation selectivity is a fundamental neural mechanism in the brain that plays a crucial role in perception. However, due to the recognition process of high-dimensional spatial information commonly occurring in high-order cortex, we still know little about the mechanisms underlying stereo-orientation selectivity and lack a modeling strategy. A classical explanation for the mechanism of two-dimensional orientation selectivity within the primary visual cortex is based on the Hubel-Wiesel model, a cascading neural connection structure.

View Article and Find Full Text PDF

Objectives: This study aims to explore the capabilities of dendritic learning within feedforward tree networks (FFTN) in comparison to traditional synaptic plasticity models, particularly in the context of digit recognition tasks using the MNIST dataset.

Methods: We employed FFTNs with nonlinear dendritic segment amplification and Hebbian learning rules to enhance computational efficiency. The MNIST dataset, consisting of 70,000 images of handwritten digits, was used for training and testing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!