Cytidine triphosphate synthase 1 (CTPS1) is an enzyme expressed in activated lymphocytes that catalyzes the conversion of uridine triphosphate (UTP) to cytidine triphosphate (CTP) with ATP-dependent amination, using either L-glutamine or ammonia as the nitrogen source. Since CTP plays an important role in DNA/RNA synthesis, phospholipid synthesis, and protein sialyation, CTPS1-inhibition is expected to control lymphocyte proliferation and size expansion in inflammatory diseases. In contrast, CTPS2, an isozyme of CTPS1 possessing 74% amino acid sequence homology, is expressed in normal lymphocytes. Thus, CTPS1-selective inhibition is important to avoid undesirable side effects. Here, we report the discovery of CTpep-3: Ac-FRLGLLKAFRRLF-OH from random peptide libraries displayed on T7 phage, which exhibited CTPS1-selective binding with a K value of 210nM in SPR analysis and CTPS1-selective inhibition with an IC value of 110nM in the enzyme assay. Furthermore, two fundamentally different approaches, enzyme inhibition assay and HDX-MS, provided the same conclusion that CTpep-3 acts by binding to the amidoligase (ALase) domain on CTPS1. To our knowledge, CTpep-3 is the first CTPS1-selective inhibitor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.peptides.2017.06.007DOI Listing

Publication Analysis

Top Keywords

random peptide
8
displayed phage
8
cytidine triphosphate
8
ctps1-selective inhibition
8
identification cytidine-5-triphosphate
4
cytidine-5-triphosphate synthase1-selective
4
synthase1-selective inhibitory
4
inhibitory peptide
4
peptide random
4
peptide library
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!