A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Flame retardant and hydrophobic coatings on cotton fabrics via sol-gel and self-assembly techniques. | LitMetric

Flame retardant and hydrophobic coatings on cotton fabrics via sol-gel and self-assembly techniques.

J Colloid Interface Sci

Department of Chemical & Biomolecular Engineering and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, United States. Electronic address:

Published: November 2017

Nanocoatings consisting of ammonium polyphosphate (APP), sodium montmorillonite (MMT), and vinyltrimethoxysilane (VTMS) were prepared via self-assembly and in situ sol-gel techniques and applied onto cotton fabrics to achieve both flame retardancy and hydrophobicity. The impacts of APP concentration on the hydrophobicity and fire resistance of the coated fabrics were investigated. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) characterization results verified the hydrolysis-condensation reaction of VTMS and the formation of Si-O-Si network structure. X-ray diffraction (XRD) proved the formation of a layered structure based on MMT nanosheets in the coatings. Both vertical flame test (VFT), limiting oxygen index (LOI), thermogravimetric analysis (TGA) and microscale combustion calorimeter (MCC) characterization were conducted to evaluate the flame retardancy, thermostability and heat release behavior of the coated cotton fabrics, respectively. The results suggested that a higher concentration of APP is beneficial for both hydrophobicity and flame retardancy of the coated substrates. Overall, our research provides a facile and very effective approach to prepare flame retardant and hydrophobic multifunctional coating for cotton fabric and other substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2017.06.087DOI Listing

Publication Analysis

Top Keywords

cotton fabrics
12
flame retardancy
12
flame retardant
8
retardant hydrophobic
8
flame
6
hydrophobic coatings
4
cotton
4
coatings cotton
4
fabrics
4
fabrics sol-gel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!