As a consequence of their commercial availability, ease of use, and reproducibility, controlled cortical impact (CCI) devices have attained significant prevalence in preclinical traumatic brain injury research. With a CCI, the severity of injury is controlled by varying the impact depth, velocity, and duration, but the actual performance of the device is not well appreciated, partly because of the velocity and short travel distance to impact. This study used a high-speed video digital camera to investigate the performance of five electromagnetically driven CCI devices of the same model. Videography indicated that the impactor tip made a series of distinctive vertical advances and retractions before it attained the desired preset depth; this was also observed in male mouse CCI tests. The impactor tip was also observed to move in the horizontal direction by .8-1.6 mm. On the first advance, the tip extended a distance that was shorter than the preset depth and the velocity of impactor tip was slightly faster than the preset values for three of the five machines. One of the devices was evaluated on four separate occasions over a 14-month period and was found to operate consistently over time. Overall, differences in impact depth and velocity between the devices were modest, suggesting that comparisons of experimental results from different laboratories will generally be informative, particularly if reports provide relevant descriptions of neuropathology. However, the repetitive extension and retraction and horizontal movement of the tip suggests caution in modeling CCI as a single injurious event.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.24099 | DOI Listing |
Front Optoelectron
January 2025
Institution of Physics, Saratov State University, Saratov, 410012, Russia.
Current study presents an advanced method for improving the visualization of subsurface blood vessels using laser speckle contrast imaging (LSCI), enhanced through principal component analysis (PCA) filtering. By combining LSCI and laser speckle entropy imaging with PCA filtering, the method effectively separates static and dynamic components of the speckle signal, significantly improving the accuracy of blood flow assessments, even in the presence of static scattering layers located above and below the vessel. Experiments conducted on optical phantoms, with the vessel depths ranging from 0.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory of Mountain Bridge and Tunnel Engineering, College of Civil Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.
The lining cavities in tunnels have strong concealment and pose significant risks, seriously affecting tunnel operational safety. Therefore, it is necessary to develop efficient and high-precision detection techniques for tunnel lining cavities. In this study, concrete slabs with different parameter cavities were selected as the research object, and experiments on remote detection using Laser Doppler Vibrometry were conducted.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an 311300, China.
As a member of the chalcogenide family, NiSe exhibits a direct bandgap of 1.74 eV, making it a promising candidate for nonlinear optical devices. However, its potential in the near-infrared region of the telecommunication band has not been fully explored.
View Article and Find Full Text PDFUltrasonics
December 2024
School of Mechatronic & Automation Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Silicate Cultural Relics Conservation (Shanghai University), Ministry of Education, China. Electronic address:
Fiber reinforced polymer composites (FRPs) are essential for various industrial fields, but wrinkles inside will greatly reduce their mechanical properties. Full-matrix capture (FMC) is a popular data structure for ultrasonic phased array imaging in composites. However, such structure may lead to data redundancy and noise interference.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Changjiang Water Resources Protection Institute, Wuhan, 430051, China.
Selective withdrawal is an effective measure to mitigate the adverse effects caused by reservoir construction. The main types of selective withdrawal include multi-level withdrawal and internal weir withdrawal, each with distinct characteristics. It is urgent to elucidate the thermal response differences between these two types of selective withdrawal to improve scheduling accuracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!