Background: A relevant proportion of allergic rhinoconjunctivitis (ARC) patients experience recurrent symptoms after successfully completing allergen immunotherapy (AIT). This prospective, controlled, noninterventional study used internationally standardized instruments to determine the clinical effects of a preseasonal, ultra-short-course booster AIT on clinical outcome parameters.
Methods: This two-arm study included patients aged ≥12 years with recurrent grass pollen-induced seasonal AR who had completed a successful course of any grass pollen AIT at least 5 years before enrolment. Overall, 56 patients received one preseasonal short-course booster AIT using tyrosine-absorbed grass pollen allergoids containing the adjuvant monophosphoryl lipid A (MPL ); 51 control patients received symptomatic medication. The combined symptom and medication score (CSMS) was recorded in the (peak) grass pollen season. Furthermore, concomitant (antiallergic) medication use, the patients' state of health, Mini Rhinoconjunctivitis Quality of Life Questionnaire (MiniRQLQ) results and safety/tolerability of the treatment were assessed.
Results: The CSMS in the peak grass pollen season was significantly lower in the booster AIT group (Δ=38.4%, P<.01). Moreover, significantly more patients in this group used no concomitant antiallergic medication throughout the peak grass pollen season. Twice as many patients in the booster AIT group as in the control group reported having a better state of health than in the preceding season. MiniRQLQ results showed significant differences favouring the booster AIT. The booster AIT was generally well tolerated, with only two patients reporting mild, grade 1 systemic adverse events.
Conclusion: Booster AIT using tyrosine-absorbed allergoids containing the adjuvant MPL effectively prevents re-occurrence of symptoms in patients with grass pollen-induced ARC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763416 | PMC |
http://dx.doi.org/10.1111/all.13240 | DOI Listing |
BMC Public Health
January 2025
Social Environment and Health Program, Institute for Social Research, University of Michigan, 426 Thompson St., Ann Arbor, MI, 48104, USA.
Introduction: Levels of plant-based aeroallergens are rising as growing seasons lengthen and intensify with anthropogenic climate change. Increased exposure to pollens could increase risk for mortality from respiratory causes, particularly among older adults. We determined short-term, lag associations of four species classes of pollen (ragweed, deciduous trees, grass pollen and evergreen trees) with respiratory mortality (all cause, chronic and infectious related) in Michigan, USA.
View Article and Find Full Text PDFImmunology
January 2025
Department of Allergology, National Medical Institute of the Ministry of the Interior and Administration, Warsaw, Poland.
The purpose of this study was to compare the efficacy and safety of subcutaneous, sublingual, oral specific immunotherapy in patients who suffer from allergic conditions to pollen from trees, grasses and weeds, house dust mites and Alternaria alternata spores. A literature search was performed separately for each type of allergen and each administration route of the drug. As a result, it was found that all administration routes were quite effective.
View Article and Find Full Text PDFBMC Genomics
January 2025
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China.
Background: Sugarcane is a crucial crop for both sugar and bioethanol production. The nobilization breeding and utilization of wild germplasm have significantly enhanced its productivity. However, the pollen sterility in Saccharum officinarum restricts its role to being a female parent in crosses with Saccharum spontaneum during nobilization breeding, resulting in a narrow genetic basis for modern sugarcane cultivars.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), Benito Juarez Marg, New Delhi, 110021, India.
Overexpression of general transcription factor OsTFIIB5 in rice affects seedling growth, plant height, flowering time, panicle architecture, and seed protein/starch levels and involves modulation of expression of associated genes. TFIIB, a key general transcription factor (GTF), plays a critical role in pre-initiation complex (PIC) formation and facilitates RNA polymerase II-mediated transcription. In humans and yeast, TFIIB is encoded by a single gene; however, in plants it is encoded by a multigene family whose products may perform specialized transcriptional functions.
View Article and Find Full Text PDFNew Phytol
January 2025
Department of Plant Biology, University of Illinois, Urbana, 61801, IL, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!