Pyrrole was covalently bonded to 1-methyl and 1-benzylimidazolium ionic liquids (ILs) via an N-substituted alkyl linkage to prepare electropolymerizable IL monomers with excellent thermal stability. The methylimidazolium IL, [pyrrole-CMIm], was then electropolymerized on macro- and microelectrode materials to form conductive polymeric IL (CPIL)-modified surfaces. Electrochemical characterization of a 1.6 mm diameter Pt disk electrode modified with poly[pyrrole-CMIm] demonstrated a selective uptake for an anionic redox probe while rejecting a cationic redox probe. Furthermore, electropolymerization of [pyrrole-CMIm] doped with single-walled carbon nanotubes (SWNT) on 125 μm platinum wires produced 42 μm thick poly[pyrrole-CMIm]/SWNT films compared to 17 μm in the absence of SWNT and 5 μm for the previously reported poly[thiophene-CMIm] coatings. The poly[pyrrole-CMIm]/SWNT films were prepared with reproducible thicknesses as well as thermal properties sufficient for high-temperature applications, such as solid-phase microextraction (SPME) with gas chromatographic analysis. The utilization of the CPIL sorbent materials in SPME experiments provided excellent extraction efficiencies and selectivity toward organic aromatic analytes. The CPIL sorbent coatings also yielded outstanding fiber-to-fiber reproducibility on the basis of extraction efficiencies and improved response for a range of analytes relative to commercial 100 μm poly(dimethylsiloxane) fibers when normalized for differences in film thickness. Poly[pyrrole-CMIm] CPIL coatings doped with SWNT are therefore promising new sorbent materials for SPME analyses.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b05793DOI Listing

Publication Analysis

Top Keywords

conductive polymeric
8
ionic liquids
8
solid-phase microextraction
8
redox probe
8
poly[pyrrole-cmim]/swnt films
8
cpil sorbent
8
sorbent materials
8
materials spme
8
extraction efficiencies
8
μm
5

Similar Publications

Extrusion-based 3D printing is a widely utilized tool in tissue engineering, offering precise 3D control of bioinks to construct organ-sized biomaterial objects with hierarchically organized cellularized scaffolds. Topological properties in flowing polymers are determined by macromolecule conformation, namely orientation and stretch degree. We utilized the micro-macro approach to describe hydrogel macromolecule orientation during extrusion, offering a two-scale fluid behavior description.

View Article and Find Full Text PDF

Diblock copolyelectrolytes have significant potential in applications such as solid-state single-ion conductors, but precisely controlling their nanostructures for efficient ion transport remains a challenge. In this study, we explore the phase behavior and microphase transitions of AX BY-type diblock copolyelectrolytes under alternating electric fields using coarse-grained molecular dynamics simulations. We systematically investigate the effects of various electric field features, including unipolar and bipolar square-waves, as well as offset and non-offset sine-waves, focusing on how field strength and period influence the self-assembling morphology of the copolyelectrolytes.

View Article and Find Full Text PDF

Supramolecular ionogels enable highly efficient electrochromism.

Mater Horiz

January 2025

College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, 410082, Hunan, China.

Ionogels are a promising solution to improve the functionality of electrochromic devices (ECDs) by solving issues related to traditional liquid electrolytes, such as volatility, toxicity, and leakage. However, manufacturing ionogels is complicated as it often involves cross-linking polymerization or chemical sol-gel processes, requiring large amounts of inorganic or polymeric gelators. This results in low ionic conductivity and poor ECD performance.

View Article and Find Full Text PDF

Electrochemical stability of electrospun silicon/carbon nanofiber anode materials: a review.

Phys Chem Chem Phys

January 2025

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.

Silicon (Si) is regarded as a promising anode material owing to its high specific capacity and low lithiation potential. The large volume change and the pulverization of silicon during the lithiation/delithiation process hinder its direct energy storage application. This review focuses on the electrospun silicon/carbon (Si/C) nanofiber anode materials for lithium-ion batteries for long-term stable energy storage.

View Article and Find Full Text PDF

Enhanced Protein Immobilization Capacity through Grafting of Poly(sodium methacrylate) onto Magnetic Bead Surface.

Langmuir

January 2025

School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, Jiangsu 211189, P. R. China.

This study aims to improve the signal-to-noise ratio (SNR) of chemiluminescence immunoassay (CLIA) by increasing the amount of protein immobilized on the surface of the magnetic bead (MB). Proteins are macromolecules with three-dimensional structures, and merely increasing the density of functional groups on the two-dimensional surface of the MB cannot significantly enhance protein immobilization. Therefore, we grafted spatially extended functional polymer to not only increase the density of functional groups on the MB surface but also expand their distribution in three-dimensional space, ultimately increasing protein immobilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!