Antimalarial drug combination therapy is now being widely used for the treatment of uncomplicated malaria. The objective of the present study was to investigate the effects of coadministration of intramuscular α/β-arteether (α/β-AE) and oral sulfadoxine-pyrimethamine (SP) on the pharmacokinetic properties of each drug as a drug-drug interaction study to support the development of a fixed-dose combination therapy. A single-dose, open-label, crossover clinical trial was conducted in healthy adult Indian male volunteers (18 to 45 years, = 13) who received a single dose of AE or SP or a combination dose of AE and SP. Blood samples were collected up to 21 days postadministration, and concentrations of α-AE, β-AE, sulfadoxine, and pyrimethamine were determined by using a validated liquid chromatography-tandem mass spectrometry method. Pharmacokinetic parameters were calculated and statistically analyzed to calculate the geometric mean ratio and confidence interval. Following single-dose coadministration of intramuscular AE and oral SP, the pharmacokinetic properties of α/β-AE were not significantly affected, and α/β-AE had no significant effect on the pharmacokinetic properties of SP in these selected groups of healthy volunteers. However, more investigations are needed to explore this further. (This study has been registered in the clinical trial registry of India under approval no. CTRI/2011/11/002155.).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5571326PMC
http://dx.doi.org/10.1128/AAC.02177-16DOI Listing

Publication Analysis

Top Keywords

pharmacokinetic properties
12
drug-drug interaction
8
combination therapy
8
coadministration intramuscular
8
clinical trial
8
pharmacokinetic
5
assessment clinical
4
clinical pharmacokinetic
4
pharmacokinetic drug-drug
4
interaction antimalarial
4

Similar Publications

Coverage bias in small molecule machine learning.

Nat Commun

January 2025

Chair for Bioinformatics, Institute for Computer Science, Friedrich Schiller University Jena, Jena, Germany.

Small molecule machine learning aims to predict chemical, biochemical, or biological properties from molecular structures, with applications such as toxicity prediction, ligand binding, and pharmacokinetics. A recent trend is developing end-to-end models that avoid explicit domain knowledge. These models assume no coverage bias in training and evaluation data, meaning the data are representative of the true distribution.

View Article and Find Full Text PDF

Pre-assembled nanospheres in mucoadhesive microneedle patch for sustained release of triamcinolone in the treatment of oral submucous fibrosis.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University; Hunan Engineering Research Center for Oral Digital Intelligence and Personalized Medicine; Hunan 3D Printing Engineering Research Center of Oral Care; WANG Songling Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410078.

Objectives: Drug-loaded mucoadhesive silk fibroin (SF) microneedle patch can overcome the limitations of low bioavailability and significant pain associated with traditional treatment methods, such as topical application or injection of triamcinolone for oral submucous fibrosis (OSF). However, these systems release the drug too quickly, failing to meet the clinical requirements. This study aims to construct a mucoadhesive SF microneedle patch pre-assembled with silk fibroin nanospheres (SFN) and explore its ability to sustain the release of triamcinolone in the treatment of OSF.

View Article and Find Full Text PDF

Synthesis and pharmacological evaluation of natural product diphyllin derivatives against head and neck squamous cell carcinoma.

Eur J Med Chem

December 2024

Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Digital Diagnosis and Treatment Innovation Center for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China. Electronic address:

Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignant tumors, but clinical drug treatments are limited. The natural product diphyllin was identified as a lead compound suppressing the proliferation of HNSCC cells through phenotypic screening of natural product library. However, further developments of diphyllin as an anti-HNSCC agent were restricted by the weak bioactivity and poor metabolic stability.

View Article and Find Full Text PDF

Discovery of Potent, Highly Selective, and Orally Bioavailable MTA Cooperative PRMT5 Inhibitors with Robust Antitumor Activity.

J Med Chem

January 2025

Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China.

Protein arginine methyltransferase 5 (PRMT5), which catalyzes the symmetric dimethylation of arginine residues on target proteins, plays a critical role in gene expression regulation, RNA processing, and signal transduction. Aberrant PRMT5 activity has been implicated in cancers and other diseases, making it a potential therapeutic target. Here, we report the discovery of a methylthioadenosine (MTA) cooperative PRMT5 inhibitor.

View Article and Find Full Text PDF

Controlled-release microparticles offer a promising avenue for enhancing patient compliance and minimizing dosage frequency. In this study, we aimed to design controlled-release microparticles of Glipizide utilizing Eudragit S100 and Methocel K 100 M polymers as controlling agents. The microparticles were fabricated through a simple solvent evaporation method, employing various drug-to-polymer ratios to formulate different controlled-release batches labeled as F1 to F5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!