The sand rat is a gerbil species native to deserts of North Africa and the Middle East, and is constrained in its ecology because high carbohydrate diets induce obesity and type II diabetes that, in extreme cases, can lead to pancreatic failure and death. We report the sequencing of the sand rat genome and discovery of an unusual, extensive, and mutationally biased GC-rich genomic domain. This highly divergent genomic region encompasses several functionally essential genes, and spans the ParaHox cluster which includes the insulin-regulating homeobox gene The sequence of sand rat has been grossly affected by GC-biased mutation, leading to the highest divergence observed for this gene across the Bilateria. In addition to genomic insights into restricted caloric intake in a desert species, the discovery of a localized chromosomal region subject to elevated mutation suggests that mutational heterogeneity within genomes could influence the course of evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5530673PMC
http://dx.doi.org/10.1073/pnas.1702930114DOI Listing

Publication Analysis

Top Keywords

sand rat
12
genome sequence
4
sequence diabetes-prone
4
diabetes-prone rodent
4
rodent reveals
4
reveals mutation
4
mutation hotspot
4
hotspot parahox
4
parahox gene
4
gene cluster
4

Similar Publications

We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery.

View Article and Find Full Text PDF

Loud noise exposure is one of the leading causes of permanent hearing loss. Individuals with noise-induced hearing loss (NIHL) suffer from speech comprehension deficits and experience impairments to cognitive functions such as attention and decision-making. Here, we investigate the specific underlying cognitive processes during auditory perceptual decision-making that are impacted by NIHL.

View Article and Find Full Text PDF

Palmitoylation-dependent association with Annexin II directs hepatitis E virus ORF3 sorting into vesicles and quasi-enveloped virions.

Proc Natl Acad Sci U S A

January 2025

Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.

Historically considered to be nonenveloped, hepatitis E virus (HEV), an important zoonotic pathogen, has recently been discovered to egress from infected cells as quasi-enveloped virions. These quasi-enveloped virions circulating in the blood are resistant to neutralizing antibodies, thereby facilitating the stealthy spread of infection. Despite abundant evidence of the essential role of the HEV-encoded ORF3 protein in quasi-enveloped virus formation, the underlying mechanism remains unclear.

View Article and Find Full Text PDF

Theoretically, animals with longer hindlimbs are better jumpers, while those with shorter hindlimbs are better maneuverers. Yet experimental evidence of this relationship in mammals is lacking. We compared jump force and maneuverability in a lab population of Mongolian gerbils (Meriones unguiculatus).

View Article and Find Full Text PDF

Mutations in the gene ABCA4 coding for photoreceptor-specific ATP-binding cassette subfamily A member 4, are responsible for Stargardts Disease type 1 (STGD1), the most common form of inherited macular degeneration. STGD1 typically declares early in life and leads to severe visual handicap. Abca4 gene-deletion mouse models of STGD1 accumulate lipofuscin, a hallmark of the disease, but unlike the human disease show no or only moderate structural changes and no functional decline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!