The effects of chemical fixation on the cellular nanostructure.

Exp Cell Res

Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA.

Published: September 2017

Chemical fixation is nearly indispensable in the biological sciences, especially in circumstances where cryo-fixation is not applicable. While universally employed for the preservation of cell organization, chemical fixatives often introduce artifacts that can confound identification of true structures. Since biological research is increasingly probing ever-finer details of the cellular architecture, it is critical to understand the nanoscale transformation of the cellular organization due to fixation both systematically and quantitatively. In this work, we employed Partial Wave Spectroscopic (PWS) Microscopy, a nanoscale sensitive and label-free live cell spectroscopic-imaging technique, to analyze the effects of the fixation process through three commonly used fixation protocols for cells in vitro. In each method investigated, we detected dramatic difference in both nuclear and cytoplasmic nanoarchitecture between live and fixed states. But significantly, despite the alterations in cellular nanoscale organizations after chemical fixation, the population differences in chromatin structure (e.g. induced by a specific chemotherapeutic agent) remains. In conclusion, we demonstrated that the nanoscale cellular arrangement observed in fixed cells was fundamentally divorced from that in live cells, thus the quantitative analysis is only meaningful on the population level. This finding highlights the importance of live cell imaging techniques with nanoscale sensitivity or cryo-fixation in the interrogation of cellular structure, to complement more traditional chemical fixation methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5726765PMC
http://dx.doi.org/10.1016/j.yexcr.2017.06.022DOI Listing

Publication Analysis

Top Keywords

chemical fixation
16
live cell
8
fixation
7
cellular
6
nanoscale
5
effects chemical
4
fixation cellular
4
cellular nanostructure
4
chemical
4
nanostructure chemical
4

Similar Publications

Photocatalytic conversion of CO2 into value-added chemicals offers a propitious alternative to traditional thermal methods, contributing to environmental remediation and energy sustainability. In this respect, covalent organic frameworks (COFs), are crystalline porous materials showcasing remarkable efficacy in CO2 fixation facilitated by visible light owing to their excellent photochemical properties. Herein, we employed Lewis acidic Zn(II) anchored pyrene-based COF (Zn(II)@Pybp-COF) to facilitate the photocatalytic CO2 utilization and transformation to 2-oxazolidinones.

View Article and Find Full Text PDF

Cobalt-Cluster-Based Metal-Organic-Framework-Catalyzed Carboxylative Cyclization of Propargylic Amines with CO from Flue Gas.

Inorg Chem

January 2025

Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China.

The fixation of carbon dioxide (CO) directly from flue gas into valuable chemicals like 2-oxazolidinones is of great significance for economic and environmental benefits, which is typically catalyzed by noble-metal catalysts and under harsh conditions. Herein, a novel 2-fold interpenetrated framework {[Co(μ-O)(TCA)(HDPTA)]·2HO·2DMF} [Co(II)-based metal-organic framework ()] containing [Co] clusters and highly dense amino groups (-NH) dispersed in the channel was prepared, exhibiting high solvent/pH stability and CO adsorption capacity (24.9 cm·g).

View Article and Find Full Text PDF

Bioenergetic trade-offs can reveal the path to superior microbial CO fixation pathways.

mSystems

January 2025

Department of Chemical and P. Engineering, Research and Innovation Centre on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates.

A comprehensive optimization of known prokaryotic autotrophic carbon dioxide (CO) fixation pathways is presented that evaluates all their possible variants under different environmental conditions. This was achieved through a computational methodology recently developed that considers the trade-offs between energy efficiency (yield) and growth rate, allowing us to evaluate candidate metabolic modifications for microbial conversions. The results revealed the superior configurations in terms of both yield (efficiency) and rate (driving force).

View Article and Find Full Text PDF

Expression and characterization of the complete cyanophage genome PP in the heterologous host Synechococcus elongatus PCC 7942.

Int J Biol Macromol

January 2025

School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, PR China. Electronic address:

In this study, we successfully integrated the full-length genome of the cyanophage PP into the non-host cyanobacterium Synechococcus elongatus PCC 7942, facilitated by conjugation via Escherichia coli. To address the challenge posed by the toxic open reading frames (ORFs) of PP in E. coli, we first identified and characterized three toxic ORFs.

View Article and Find Full Text PDF

Biofilm Formation, Modulation, and Transcriptomic Regulation Under Stress Conditions in sp.

Int J Mol Sci

January 2025

Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.

In nature, bacteria often form heterogeneous communities enclosed in a complex matrix known as biofilms. This extracellular matrix, produced by the microorganisms themselves, serves as the first barrier between the cells and the environment. It is composed mainly of water, extracellular polymeric substances (EPS), lipids, proteins, and DNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!