Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Here, we report the synthesis, characterization, and efficacy study of Fe/Fe₃O₄-nanoparticles that were co-labeled with a tumor-homing and membrane-disrupting oligopeptide and the iron-chelator Dp44mT, which belongs to the group of the thiosemicarbazones. Dp44mT and the peptide sequence PLFAERL([KLAKLAKKLAKLAK])CGKRK were tethered to the surface of Fe/Fe₃O₄ core/shell nanoparticles by utilizing dopamine-anchors. The 26-mer contains two important sequences, which are the tumor targeting peptide CGKRK, and [KLAKLAK]₂, known to disrupt the mitochondrial cell walls and to initiate programmed cell death (apoptosis). It is noteworthy that Fe/Fe₃O₄ nanoparticles can also be used for MRI imaging purposes in live mammals. In a first step of this endeavor, the efficacy of this nanoplatform has been tested on the highly metastatic 4T1 breast cancer cell line. At the optimal ratio of PLFAER[KLAKLAK]₂CGKRK to Dp44mT of 1 to 3.2 at the surface of the dopamine-coated Fe/Fe₃O₄-nanocarrier, the IC value after 24 h of incubation was found to be 2.2 times lower for murine breast cancer cells (4T1) than for a murine fibroblast cell line used as control. Based on these encouraging results, the reported approach has the potential of leading to a new generation of nanoplatforms for cancer treatment with considerably enhanced selectivity towards tumor cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618274 | PMC |
http://dx.doi.org/10.3390/jfb8030023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!