Functionalizing soy protein nano-aggregates with pH-shifting and mano-thermo-sonication.

J Colloid Interface Sci

Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Electronic address:

Published: November 2017

Plant protein-mediated nano-delivery systems have gained increasing attention in the food and pharmaceutical industries in recent years. Several physical and chemical methods for improving the functional properties of plant proteins with respect to the native forms have been proposed. This study presents a new approach, which combines pH-shifting and mano-thermo-sonication (MTS) to produce soy protein nano-aggregates with significantly improved functional properties. Soy-protein isolate (SPI) was treated with pH-shifting at pH 12 or in combination with MTS and high-pressure homogenization (HPH). Response Surface Methodology was used to find the optimal conditions (50°C, 200kPa, and 60s) for the MTS. The combination of pH-shifting and MTS resulted in spherical SPI aggregates of the smallest size, 27.1±1nm, as shown by transmission electron microscopy. The SPI nanoaggregates were used to prepare oil-in-water nanoemulsions with canola oil, which exhibited good stability over 21days at 4°C. In addition, the pH 12-MTS samples had resulted in the highest protein solubility, lowest turbidity, free sulfhydryl and disulfide bonds, surface hydrophobicity, antioxidant activity, and rheological and emulsifying properties than the other samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2017.06.088DOI Listing

Publication Analysis

Top Keywords

soy protein
8
protein nano-aggregates
8
ph-shifting mano-thermo-sonication
8
functional properties
8
functionalizing soy
4
ph-shifting
4
nano-aggregates ph-shifting
4
mano-thermo-sonication plant
4
plant protein-mediated
4
protein-mediated nano-delivery
4

Similar Publications

Background: Use of health applications (apps) to support healthy lifestyles has intensified. Different app features may support effectiveness, including gamification defined as the use of game elements in a non-game situation. Whether health apps with gamification can impact behaviour change and cardiometabolic risk factors remains unknown.

View Article and Find Full Text PDF

GmERF13 mediates salt inhibition of nodulation through interacting with GmLBD16a in soybean.

Nat Commun

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, Shandong, China.

While the genetic regulation of nodule formation has been well explored, the molecular mechanisms by which abiotic stresses, such as salt stress, impede nodule formation remain largely elusive. Here, we identify four APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors, GmERF13s, that are induced by salt stress and play key roles in salt-repressed nodulation. Loss of GmERF13 function increases nodule density, while its overexpression suppresses nodulation.

View Article and Find Full Text PDF

Analysis of printing temperature effect on texture modification: Potential of soy protein isolate-based bigel for swallowing-friendly food.

Int J Biol Macromol

January 2025

Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China. Electronic address:

This work prepared the soy protein isolate (SPI)-beeswax-based bigel loaded with β-carotene, and the effect of printing temperature (PT) on texture regulation was investigated. During printing, increasing PT weakened the rheological properties and printability of ink. However, the mechanical strength and deformation resistance at non-linear regions of products were strengthened after printing.

View Article and Find Full Text PDF

Tuning the properties of soy protein isolate-based adhesive using various sustainable additives.

Int J Biol Macromol

January 2025

Department of Chemical, Metallurgical and Materials Engineering (Polymer Division), Institute of NanoEngineering Research (INER), Tshwane University of Technology, Pretoria, South Africa.

This work investigates the adhesive property of Soy Protein Isolate(SPI)polymer solution by studying mechanical properties of composites formed using waste wood granules and SPI solutions. To improve the adhesive strength of SPI solution, Carboxymethyl Cellulose Sodium(NaCMC)was mixed (in the weight ratios of 9:1 and 8:2) due to its strong gel formation capabilities. The adhesive performance of these composites was further investigated in the presence and absence of non-toxic additives, including sorbitol (SOR) and stearic acid (SA).

View Article and Find Full Text PDF

Subabul (Leucaena leucocephala L.) is a leguminous species often referred to as the "miracle tree," it provides numerous ecosystem services and exhibits robust ecological characteristics. However, the infection caused by phytopathogenic fungi is poorly understood in Subabul.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!