Land-use type and ecosystem disturbances are important drivers for element cycling and bear the potential to modulate soil processes and hence ecosystem functions. To better understand the effect of such drivers on the magnitude and temporal patterns of organic matter (OM) and associated nutrient fluxes in soils, continuous flux monitoring is indispensable but insufficiently studied yet. We conducted a field study to elucidate the impact of land-use and surface fires on OM and nutrient fluxes with soil solution regarding seasonal and temporal patterns analyzing short (<3months) and medium-term (3-12months) effects. Control and prescribed fire-treated topsoil horizons in beech forests and pastures were monitored biweekly for dissolved and particulate OM (DOM, POM) and solution chemistry (pH value, elements: Ca, Mg, Na, K, Al, Fe, Mn, P, S, Si) over one post-fire year. Linear mixed model analyses exhibited that mean annual DOM and POM fluxes did not differ between the two land-use types, but were subjected to strong seasonal patterns. Fire disturbance significantly lowered the annual soil solution pH in both land-uses and increased water fluxes, while DOC fluxes remained unaffected. A positive response of POC and S to fire was limited to short-term effects, while amplified particulate and dissolved nitrogen fluxes were observed in the longer run and co-ocurred with accelerated Ca and Mg fluxes. In summary, surface fires generated stronger effects on element fluxes than the land-use. Fire-induced increases in POM fluxes suggest that the particulate fraction represent a major pathway of OM translocation into the subsoil and beyond. With regard to ecosystem functions, pasture ecosystems were less prone to the risk of nutrient losses following fire events than the forest. In pastures, fire-induced base cation export may accelerate soil acidification, consequently exhausting soil buffer systems and thus may reduce the resilience to acidic depositions and disturbances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2017.06.182 | DOI Listing |
Med Vet Entomol
January 2025
Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
Dermacentor variabilis (Say) (Acari: Ixodidae) is a vector for pathogens that can impact human and animal health. The geographic range of this species is expanding, but there are some areas with limited up-to-date information on the distribution of D. variabilis.
View Article and Find Full Text PDFJ Mol Cell Cardiol
January 2025
Department of Physiology, University of Kentucky, Lexington, KY, USA; Department of Internal Medicine, University of Kentucky, Lexington, KY, USA. Electronic address:
Cardiologists have analyzed daily patterns in the incidence of sudden cardiac death to identify environmental, behavioral, and physiological factors that trigger fatal arrhythmias. Recent studies have indicated an overall increase in sudden cardiac arrest during daytime hours when the frequency of arrhythmogenic triggers is highest. The risk of fatal arrhythmias arises from the interaction between these triggers-such as elevated sympathetic signaling, catecholamine levels, heart rate, afterload, and platelet aggregation-and the heart's susceptibility (myocardial substrate) to them.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2025
Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China. Electronic address:
Background: The incidence of Parkinson's disease (PD) increases with age. Previous pharmacological studies have shown the potential of Huatan Jieyu Granules (HGs) for the treatment of PD, but the exact mechanisms remain unclear. This study aimed to explore the effects of herbal treatment on PD using mouse models and single-cell sequencing.
View Article and Find Full Text PDFNat Commun
January 2025
School of Future Technology, University of Chinese Academy of Sciences, 100190, Beijing, PR China.
In bioneuronal systems, the synergistic interaction between mechanosensitive piezo channels and neuronal synapses can convert and transmit pressure signals into complex temporal plastic pulses with excitatory and inhibitory features. However, existing artificial tactile neuromorphic systems struggle to replicate the elaborate temporal plasticity observed between excitatory and inhibitory features in biological systems, which is critical for the biomimetic processing and memorizing of tactile information. Here we demonstrate a mechano-gated iontronic piezomemristor with programmable temporal-tactile plasticity.
View Article and Find Full Text PDFHandb Clin Neurol
January 2025
School of Physics, Faculty of Science, University of Sydney, Camperdown, NSW, Australia.
Sleep and circadian rhythms are regulated by dynamic physiologic processes that operate across multiple spatial and temporal scales. These include, but are not limited to, genetic oscillators, clearance of waste products from the brain, dynamic interplay among brain regions, and propagation of local dynamics across the cortex. The combination of these processes, modulated by environmental cues, such as light-dark cycles and work schedules, represents a complex multiscale system that regulates sleep-wake cycles and brain dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!