Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As promising in-situ chemical oxidation (ISCO) technologies, sulfate radical-based advanced oxidation processes (SR-AOPs) are applied in wastewater treatment and groundwater remediation in recent years. In this contribution, we report for the first time that, thermally activated persulfate oxidation of phenol in the presence of nitrite (NO), an anion widely present in natural waters, could lead to the formation of nitrated by-products including 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), 2,4-dinitrophenol (2,4-DNP), and 2,6-dinitrophenol (2,6-DNP). Nitrogen dioxide radical (NO), arising from SO scavenging by NO, was proposed to be involved in the formation of nitrophenols as a nitrating agent. It was observed that nitrophenols accounted for approximately 70% of the phenol transformed under reaction conditions of [NO] = 200 μM, [PS] = 2 mM and temperature of 50 °C. Increasing the concentration of NO remarkably enhanced the formation of nitrophenols but did not affect the transformation rate of phenol significantly. The degradation of phenol and the formation of nitrophenols were significantly influenced by persulfate dosage, solution pH and natural organic matter (NOM). Further studies on the degradation of other phenolic compounds, including 4-chlorophenol (4-CP), 4-hydroxybenzoic acid (4-HBA), and acetaminophen (ATP), verified the formation of their corresponding nitrated by-products as well. Therefore, formation of nitrated by-products is probably a common but overlooked phenomenon during SO-based oxidation of phenolic compounds in the presence of NO. Nitroaromatic compounds are well known for their carcinogenicity, mutagenicity and genotoxicity, and are potentially persistent in the environment. The formation of nitrated organic by-products in SR-AOPs should be carefully scrutinized, and risk assessment should be carried out to assess possible health and ecological impacts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2017.06.081 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!