Co-Binding of Pharmaceutical Compounds at Mineral Surfaces: Molecular Investigations of Dimer Formation at Goethite/Water Interfaces.

Environ Sci Technol

Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226 , 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France.

Published: August 2017

AI Article Synopsis

Article Abstract

The emergence of antibiotic and anti-inflammatory agents in aquatic and terrestrial systems is becoming a serious threat to human and animal health worldwide. Because pharmaceutical compounds rarely exist individually in nature, interactions between various compounds can have unforeseen effects on their binding to mineral surfaces. This work demonstrates this important possibility for the case of two typical antibiotic and anti-inflammatory agents (nalidixic acid (NA) and niflumic acid (NFA)) bound at goethite (α-FeOOH) used as a model mineral surface. Our multidisciplinary study, which makes use of batch sorption experiments, vibration spectroscopy and periodic density functional theory calculations, reveals enhanced binding of the otherwise weakly bound NFA caused by unforeseen intermolecular interactions with mineral-bound NA. This enhancement is ascribed to the formation of a NFA-NA dimer whose energetically favored formation (-0.5 eV compared to free molecules) is predominantly driven by van der Waals interactions. A parallel set of efforts also showed that no cobinding occurred with sulfamethoxazole (SMX) because of the lack of molecular interactions with coexisting contaminants. As such, this article raises the importance of recognizing drug cobinding, and lack of cobinding, for predicting and developing policies on the fate of complex mixtures of antibiotics and anti-inflammatory agents in nature.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.7b02835DOI Listing

Publication Analysis

Top Keywords

anti-inflammatory agents
12
pharmaceutical compounds
8
mineral surfaces
8
antibiotic anti-inflammatory
8
co-binding pharmaceutical
4
compounds mineral
4
surfaces molecular
4
molecular investigations
4
investigations dimer
4
dimer formation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!