The preparation of histidine enriched dendritic peptide amphiphiles and their self-assembly into multicomponent pH-switchable supramolecular polymers is reported. Alternating histidine and phenylalanine peptide synthons allow the assembly/disassembly to be adjusted in a physiologically relevant range of pH 5.3-6.0. Coassembly of monomers equipped with dendritic tetraethylene glycol chains with monomers bearing peripheral primary amine groups leads to nanorods with a tunable cationic surface charge density. These surface functional supramolecular polycations are able to reversibly bind short interfering RNA (siRNA). The nanorod-like supramolecular polymers, their complexation with siRNA, and the pH-triggered assembly/disassembly of the supramolecular carriers are characterized via circular dichroism spectroscopy, gel electrophoresis, as well as transmission electron microscopy. Multicomponent supramolecular polymers represent a modular and promising strategy for applications as responsive carrier vehicles, codelivery strategies, and gene therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.201700111 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!