The direct position determination approach was recently presented as a promising technique for the localization of a transmitting source with accuracy higher than that of the conventional two-step localization method. In this paper, the theoretical performance of a direct position determination estimator proposed by Weiss is examined for situations in which the array model errors are present. Our study starts from a matrix eigen-perturbation result, which expresses the perturbation of eigenvalues as a function of the disturbance added to the Hermitian matrix. The first-order asymptotic expression of the positioning errors is presented, from which an analytical expression for the mean square error of the direct localization is available. Additionally, explicit formulas for computing the probabilities of a successful localization are deduced. Finally, Cramér-Rao bound expressions for the position estimation are derived for two cases: (1) array model errors are absent and (2) array model errors are present. The obtained Cramér-Rao bounds provide insights into the effects of the array model errors on the localization accuracy. Simulation results support and corroborate the theoretical developments made in this paper.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539660PMC
http://dx.doi.org/10.3390/s17071550DOI Listing

Publication Analysis

Top Keywords

array model
20
model errors
20
direct position
12
position determination
12
errors
6
array
5
model
5
localization
5
performance analysis
4
direct
4

Similar Publications

Background: In the early 1940s, before antihypertensive drugs were available, the Rice Diet Programme (RDP) was developed to treat severe hypertension and, later, diabetes and obesity. Despite significant advancements in dietary management for these conditions since then, debates remain regarding the proper guidelines for sodium and macronutrients intakes. The patient care records of RDP offer a unique source of longitudinal examination of a very low sodium (<10 mmol/day), fat, cholesterol and protein diet on blood pressure (BP), other health markers and survival.

View Article and Find Full Text PDF

Large variability in the alkaloid content of dietary supplements.

Front Pharmacol

January 2025

Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, United States.

Introduction: Extracts from the rhizome of the traditional Chinese medicinal plant (CY) mediate a number of biologic effects that are associated with its content of isoquinoline alkaloids. CY alkaloids have shown analgesic, cardioprotective, and anti-addictive effects in animal models of disease. Since CY alkaloids are available to consumers as dietary supplements we analyzed the content of alkaloids in 14 products including open powders, capsules, and liquid formulations, capturing a majority of the products available online in the US.

View Article and Find Full Text PDF

Analog In-memory Computing (IMC) has demonstrated energy-efficient and low latency implementation of convolution and fully-connected layers in deep neural networks (DNN) by using physics for computing in parallel resistive memory arrays. However, recurrent neural networks (RNN) that are widely used for speech-recognition and natural language processing have tasted limited success with this approach. This can be attributed to the significant time and energy penalties incurred in implementing nonlinear activation functions that are abundant in such models.

View Article and Find Full Text PDF

Three-dimensional diffractive acoustic tomography.

Nat Commun

January 2025

Department of Biomedical Engineering, Duke University, Durham, NC, USA.

Acoustically probing biological tissues with light or sound, photoacoustic and ultrasound imaging can provide anatomical, functional, and/or molecular information at depths far beyond the optical diffusion limit. However, most photoacoustic and ultrasound imaging systems rely on linear-array transducers with elevational focusing and are limited to two-dimensional imaging with anisotropic resolutions. Here, we present three-dimensional diffractive acoustic tomography (3D-DAT), which uses an off-the-shelf linear-array transducer with single-slit acoustic diffraction.

View Article and Find Full Text PDF

A machine-learning-integrated portable electrochemiluminescence sensing platform for the visualization and high-throughput immunoassays.

Talanta

January 2025

College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China. Electronic address:

Electrochemiluminescence (ECL)-based point-of-care testing (POCT) has the potential to facilitate the rapid identification of diseases, offering advantages such as high sensitivity, strong selectivity, and minimal background interference. However, as the throughput of these devices increases, the issues of increased energy consumption and cross-contamination of samples remain. In this study, a high-throughput ECL biosensor platform with the assistance of machine learning algorithms is developed by combining a microcolumn array electrode, a microelectrochemical workstation, and a smartphone with custom software.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!