A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Are Predictive Equations for Estimating Resting Energy Expenditure Accurate in Asian Indian Male Weightlifters? | LitMetric

Are Predictive Equations for Estimating Resting Energy Expenditure Accurate in Asian Indian Male Weightlifters?

Indian J Endocrinol Metab

Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, Tamil Nadu, India.

Published: January 2017

Background: The accuracy of existing predictive equations to determine the resting energy expenditure (REE) of professional weightlifters remains scarcely studied. Our study aimed at assessing the REE of male Asian Indian weightlifters with indirect calorimetry and to compare the measured REE (mREE) with published equations. A new equation using potential anthropometric variables to predict REE was also evaluated.

Materials And Methods: REE was measured on 30 male professional weightlifters aged between 17 and 28 years using indirect calorimetry and compared with the eight formulas predicted by Harris-Benedicts, Mifflin-St. Jeor, FAO/WHO/UNU, ICMR, Cunninghams, Owen, Katch-McArdle, and Nelson. Pearson correlation coefficient, intraclass correlation coefficient, and multiple linear regression analysis were carried out to study the agreement between the different methods, association with anthropometric variables, and to formulate a new prediction equation for this population.

Results: Pearson correlation coefficients between mREE and the anthropometric variables showed positive significance with suprailiac skinfold thickness, lean body mass (LBM), waist circumference, hip circumference, bone mineral mass, and body mass. All eight predictive equations underestimated the REE of the weightlifters when compared with the mREE. The highest mean difference was 636 kcal/day (Owen, 1986) and the lowest difference was 375 kcal/day (Cunninghams, 1980). Multiple linear regression done stepwise showed that LBM was the only significant determinant of REE in this group of sportspersons. A new equation using LBM as the independent variable for calculating REE was computed. REE for weightlifters = -164.065 + 0.039 (LBM) (confidence interval -1122.984, 794.854]. This new equation reduced the mean difference with mREE by 2.36 + 369.15 kcal/day (standard error = 67.40).

Conclusion: The significant finding of this study was that all the prediction equations underestimated the REE. The LBM was the sole determinant of REE in this population. In the absence of indirect calorimetry, the REE equation developed by us using LBM is a better predictor for calculating REE of professional male weightlifters of this region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477436PMC
http://dx.doi.org/10.4103/ijem.IJEM_563_16DOI Listing

Publication Analysis

Top Keywords

ree
13
predictive equations
12
indirect calorimetry
12
anthropometric variables
12
resting energy
8
energy expenditure
8
asian indian
8
ree professional
8
professional weightlifters
8
pearson correlation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!