Short-Term, Low-Volume Training Improves Heat Acclimatization in an Operational Context.

Front Physiol

Département Environnements Opérationnels, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Institut de Recherche Biomédicale des ArméesBretigny-Sur-Orge, France.

Published: June 2017

Personnel who travel to areas with a hot climate (WBGT > 27°C) may suffer from the heat (physiological strain, thermal discomfort, increased probability of heat illness), making them partially or fully inoperative. Performing physical activities during heat acclimatization is known to improve this process (i.e., improve measures of acclimatization for the same duration of acclimation). However, it is unknown whether such training would be efficient in an operative context, characterized by a high volume of work-related physical activity. Thirty French soldiers (Training group, T) performed a short (5 days), progressive, moderate (from three to five 8-min running sets at 50% of the speed at VO for 32-56 min) aerobic training program upon arriving at their base in United Arab Emirates (~40°C and 12% RH). A control group (30 soldiers; No Training, NT) continued to perform their usual outdoor military activities (~6 h.d). A field heat stress test (HST; three 8-min running sets at 50% of the speed at VO) was performed, before and after the heat acclimatization period, to assess physiological and subjective changes. Rectal temperature, heart rate (HR), thermal discomfort at rest and at the end of exercise, rates of perceived exertion (RPE), and sweat loss and osmolality decreased following heat acclimatization in both groups. However, the decreases in the T group were larger than those in the NT group for HR at the end of exercise (-20 ± 13 vs. -13 ± 6 bpm, respectively, = 0.044), thermal discomfort at rest (-2.6 ± 2.7 vs. -1.4 ± 2.1 cm, respectively, = 0.013) and at the end of exercise (-2.6 ± 1.9 vs. -1.6 ± 1.7 cm, respectively, = 0.037) and RPE (-2.3 ± 1.8 vs. -1.3 ± 1.7, respectively, = 0.035). Thus, we showed that adding short (<60 min), daily, moderate-intensity training sessions during a professional mission in a hot and dry environment accelerated several heat-acclimatization-induced changes at rest and during exercise in only 5 days.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472681PMC
http://dx.doi.org/10.3389/fphys.2017.00419DOI Listing

Publication Analysis

Top Keywords

heat acclimatization
16
thermal discomfort
12
soldiers training
8
three 8-min
8
8-min running
8
running sets
8
sets 50%
8
50% speed
8
discomfort rest
8
heat
7

Similar Publications

Climate change-induced rise in sea surface temperatures has led to an increase in the frequency and severity of coral bleaching events, ultimately leading to the deterioration of coral reefs, globally. However, the reef-building corals have an inherent capacity to acclimatize to thermal stress on pre-exposure to high temperatures by altering their endosymbiotic Symbiodiniaceae community composition towards a thermal tolerant composition. This reorganisation may become an important tool in coral's resilience to rapid environmental change.

View Article and Find Full Text PDF

Short duration heat acclimation (HA) (≤5 daily heat exposures) elicits incomplete adaptation compared to longer interventions, possibly due to the lower accumulated thermal 'dose'. It is unknown if matching thermal 'dose' over a shorter timescale elicits comparable adaptation to a longer intervention. Using a parallel-groups design, we compared: i) 'condensed' HA (CHA; =17 males) consisting of 4×75 min∙day heat exposures (target rectal temperature ()=38.

View Article and Find Full Text PDF

Heat acclimation defense against exertional heat stroke by improving the function of preoptic TRPV1 neurons.

Theranostics

January 2025

Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032.

Record-breaking heatwaves caused by greenhouse effects lead to multiple hyperthermia disorders, the most serious of which is exertional heat stroke (EHS) with the mortality reaching 60 %. Repeat exercise with heat exposure, termed heat acclimation (HA), protects against EHS by fine-tuning feedback control of body temperature (Tb), the mechanism of which is opaque. This study aimed to explore the molecular and neural circuit mechanisms of the HA training against EHS.

View Article and Find Full Text PDF

Marching band (MB) artists are often part of the general student population and not required to complete a pre-participation health screening to identify predisposing medical conditions or risks for injury/illness. Anecdotally, exertional heat illnesses (EHI) are a concern for MB artists. As more athletic trainers provide MB healthcare, research is needed on EHI occurrence and MB associated EHI risk factors.

View Article and Find Full Text PDF

Coral reefs worldwide are threatened by increasing ocean temperatures because of the sensitivity of the coral-algal symbiosis to thermal stress. Reef-building corals form symbiotic relationships with dinoflagellates (family Symbiodiniaceae), including those species which acquire their initial symbiont complement predominately from their parents. Changes in the composition of symbiont communities, through the mechanisms of symbiont shuffling or switching, can modulate the host's thermal limits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!