Hyperglycemia or diabetes mellitus (DM), which is characterized by high blood glucose levels, has been linked to an increased risk of cancer for years. However, the underlying molecular mechanisms of the pathophysiological link are not yet fully understood. In this study, we demonstrate that high glucose levels promote the proliferation of breast cancer cells by stimulating epidermal growth factor receptor (EGFR) activation and the Rho family GTPase Rac1 and Cdc42 mediate the corresponding signaling induced by high glucose levels. We further show that Cdc42 promotes EGFR phosphorylation by blocking EGFR degradation, which may be mediated by the Cbl proteins, whereas the Rac1-mediated EGFR phosphorylation is independent of EGFR degradation. Our findings elucidate a part of the underlying molecular mechanism of the link between high glucose levels and tumorigenesis in breast cancer and may provide new insights on the therapeutic strategy for cancer patients with diabetes or hyperglycemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5479300PMC
http://dx.doi.org/10.2147/BCTT.S135665DOI Listing

Publication Analysis

Top Keywords

glucose levels
20
high glucose
16
breast cancer
12
levels promote
8
promote proliferation
8
proliferation breast
8
cancer cells
8
underlying molecular
8
egfr phosphorylation
8
egfr degradation
8

Similar Publications

Impact of remnant cholesterol on short-term and long-term prognosis in patients with prediabetes or diabetes undergoing coronary artery bypass grafting: a large-scale cohort study.

Cardiovasc Diabetol

January 2025

State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Rd, Xicheng District, Beijing, 100037, People's Republic of China.

Background: Remnant cholesterol (remnant-C) contributes to atherosclerotic cardiovascular disease (ASCVD), particularly in individuals with impaired glucose metabolism. Patients with impaired glucose metabolism and ASCVD remain at significant residual risk after coronary artery bypass grafting (CABG). However, the role of remnant-C in this population has not yet been investigated.

View Article and Find Full Text PDF

Background: nowadays, the photoacoustic imaging is in the mainstream of cancer theranostics. In this study the nanoparticles with previously proven photoacoustic imaging properties, i.e.

View Article and Find Full Text PDF

An experiment was conducted for 60 days in a 500L capacity FRP tank containing inland ground saline water (fortified to a level of 50% potassium) with one control (sediment) and three treatments; T1(Paddy Straw Biochar (PSB) in sediment), T2 (Banana Peduncle Biochar (BPB) in sediment), and T3 (PSB + BPB in sediment). Biochar (100 g) was amended with sediment (25 kg) at 9 tons/ha. Shrimps of average weight 5 ± 0.

View Article and Find Full Text PDF

Abnormalities of carbohydrate antigen 19 - 9 (CA19-9) are common in patients with type 2 diabetes mellitus (T2DM), and in some patients, CA19-9 returns to normal level after glycemic control. The aim of this study was to investigate the factors associated with CA19-9 levels in patients with T2DM and the associated influences on the degree of reduction of CA19-9 levels after antidiabetic therapy (AT). This study was an observational cross-sectional study.

View Article and Find Full Text PDF

Background: Type 2 Diabetes Mellitus (T2DM) is closely associated with the development of vascular damage in the heart. In this study, the researchers aimed to determine whether Aerobic Training (AT) and Vitamin D supplementation (Vit D) could alleviate heart complications and vascular damage caused by diabetes. The effects of an eight-week AT program and Vit D on the expression of miR-1, IGF-1 genes, and VEGF-B in the cardiomyocytes of rats with T2DM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!