Objective: To analyse the proportions of protein identity between Zika virus and dengue, Japanese encephalitis, yellow fever, West Nile and chikungunya viruses as well as polymorphism between different Zika virus strains.
Methods: We used published protein sequences for the Zika virus and obtained protein sequences for the other viruses from the National Center for Biotechnology Information (NCBI) protein database or the NCBI virus variation resource. We used BLASTP to find regions of identity between viruses. We quantified the identity between the Zika virus and each of the other viruses, as well as within-Zika virus polymorphism for all amino acid -mers across the proteome, with ranging from 6 to 100. We assessed accessibility of protein fragments by calculating the solvent accessible surface area for the envelope and nonstructural-1 (NS1) proteins.
Findings: In total, we identified 294 Zika virus protein fragments with both low proportion of identity with other viruses and low levels of polymorphisms among Zika virus strains. The list includes protein fragments from all Zika virus proteins, except NS3. NS4A has the highest number (190 -mers) of protein fragments on the list.
Conclusion: We provide a candidate list of protein fragments that could be used when developing a sensitive and specific serological test to detect previous Zika virus infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5487971 | PMC |
http://dx.doi.org/10.2471/BLT.16.182105 | DOI Listing |
Immunology
January 2025
The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Many virus species, including Ebola virus, Marburg virus, SARS-CoV-2, dengue virus (DENV) and Zika virus (ZIKV), exploit CD209 and CD209L as alternative or attachment receptors for viral cis- or trans-infection. Thus, CD209 and CD209L may be critical targets for the development of therapeutic monoclonal blocking antibody drugs to disrupt the infection process caused by multiple viruses. Here, we produced a human chimeric monoclonal blocking antibody that simultaneously blocks CD209 and CD209L, namely 7-H7-B1.
View Article and Find Full Text PDFRev Med Virol
January 2025
Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China.
Zika virus (ZIKV) and dengue virus (DENV) are two major mosquito-borne flaviviruses that pose a significant threat to the global public health system, particularly in tropical regions. The clinical outcomes related to these viral pathogens can vary from self-limiting asymptomatic infections to various forms of life-threatening pathological conditions such as haemorrhagic disorders. In addition to the direct effects of the viral pathogens, immune processes play also a significant function in the development of diseases mediated by ZIKV and DENV.
View Article and Find Full Text PDFJ Gen Virol
January 2025
Unidad de Medicina Molecular, Instituto de Biomedicina de UCLM (IB-UCLM), Universidad de Castilla-La Mancha (UCLM), Albacete, Spain.
Translation errors, impaired folding or environmental stressors (e.g. infection) can all lead to an increase in the presence of misfolded proteins.
View Article and Find Full Text PDFViruses
December 2024
Department of Research, Altino Ventura Foundation (FAV), Recife 50070-040, Brazil.
Deformities, body asymmetries, and muscle contractures are common consequences of atypical postural patterns in children with c ongenital Zika syndrome (CZS). This study aimed to evaluate the posture of children with CZS, considering their neurological and visual impairments. Ophthalmological assessment included binocular best-corrected visual acuity (BCVA) using Teller Acuity Cards II (TAC II) and an ocular motility evaluation.
View Article and Find Full Text PDFViruses
December 2024
Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine.
Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!