Hydrogen-bonded network structures and preferential ion core in the protonated methanol-water mixed clusters, H(methanol)-(water) (n = 6-10), were explored by a combination of infrared spectroscopy and theoretical calculations. Infrared spectra of the OH stretch region of the clusters were measured at the two different temperature ranges by using Ar-tagging. Stable isomer structures of the clusters were searched by the multiscale modeling approach and temperature dependent infrared spectra were simulated based on the statistical populations of the isomers. The combined experimental and theoretical studies revealed that the characteristic multiring structures begin to form at n = 7 under the low temperature condition and they are preferential at the wide temperature range in n ≥ 8. It was also demonstrated that the preferential ion core type changes from methanol (MeOH) to water (HO) with increasing cluster size. In n ≤ 8, the observed infrared spectral features partly depend on the monitoring vibrational predissociation channel, and weak correlations between the hydrogen-bonded network structure and preferential dissociation channels were suggested. However, the ion core type does not necessarily correlate to the preferential dissociation channel. This implies that large rearrangement of the hydrogen-bonded network structure occurs prior to the dissociation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.7b03762 | DOI Listing |
Biomacromolecules
January 2025
National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan.
Hydration plays a crucial role in regulating the dispersion behavior of biomolecules in water, particularly in how pH-sensitive hydration water network forms around proteins. This study explores the conformation and hydration structure of Type-I tropocollagen using small- and wide-angle X-ray scattering (SWAXS) and molecular dynamics (MD) simulations. The results reveal that tropocollagen exhibits a significant softening conformation in solution, transitioning from its rod-like structure in tissues to a worm-like conformation, characterized by a reduced radius of gyration of 50 nm and a persistent length of 34 nm.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China.
The solid-state integration of molecular electron spin qubits could promote the advancement of molecular quantum information science. With highly ordered structures and rational designability, microporous framework materials offer ideal matrices to host qubits. They exhibit tunable phonon dispersion relations and spin distributions, enabling optimization of essential qubit properties including the spin-lattice relaxation time (T) and decoherence time.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.
The SARS-CoV-2 E protein conducts cations across the cell membrane to cause pathogenicity to infected cells. The high-resolution structures of the E transmembrane domain (ETM) in the closed state at neutral pH and in the open state at acidic pH have been determined. However, the ion conduction mechanism remains elusive.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
October 2024
Institut für Anorganische Chemie, Universität Kiel, Max-Eyth.-Str. 2, D-24118 Kiel, Germany.
The reaction of Zn(ClO)·6HO with NaSbS·9HO in a water/aceto-nitrile mixture leads to the formation of the title compound, (μ-tetra-thio-anti-monato-κ :')bis-[(1,4,8,11-tetra-aza-cyclo-tetra-decane-κ )zinc(II)] perchlorate 0.8-hydrate, [Zn(SbS)(CHN)]ClO·0.8HO or [(Zn-cyclam)(SbS)][ClO]·0.
View Article and Find Full Text PDFLangmuir
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
A coarse-grained model combining the acceptor-hydrogen-donor 3-body potential is first developed in this work to explore the fracture property and microscopic mechanisms of associative hydrogen-bonded polymers (AHBPs). Next, a triaxial deformation mode is performed to reveal that the fracture toughness of AHBPs initially improves and then is reduced as the number of active groups increases. By characterizing the stress decomposition, the strong hydrogen bond (HB) network improves the maximum stress but reduces the elongation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!