Organization and evolution of four differentially amplified tandem repeats in the Cucumis hystrix genome.

Planta

State Key Lab of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.

Published: October 2017

Three subtelomeric satellites and one interstitial 5S rDNA were characterized in Cucumis hystrix, and the pericentromeric signals of two C. hystrix subtelomeric satellites along C. sativus chromosomes supported the hypothesis of chromosome fusion in Cucumis. Tandem repeats are chromosome structural fractions consisting of highly repetitive sequences organized in large tandem arrays in most eukaryotes. Differentiation of tandem repeats directly affects the chromosome structure, which contributes to species formation and evolution. Cucumis hystrix (2n = 2x = 24) is the only wild Cucumis species grouped into the same subgenus with C. sativus (2n = 2x = 14), hence its phylogenetic position confers a vital role for C. hystrix to understand the chromosome evolution in Cucumis. However, our knowledge of C. hystrix tandem repeats is insufficient for a detailed understanding of the chromosome evolution in Cucumis. Based on de novo tandem repeat characterization using bioinformatics and in situ hybridization (ISH), we identified and characterized four differentially amplified tandem repeats, Cucumis hystrix satellite 1-3 (CuhySat1-CuhySat3) located at the subtelomeric regions of all chromosomes, and Cucumis hystrix 5S (Cuhy5S) located at the interstitial regions of one single chromosome pair. Comparative ISH mapping using CuhySat1-3 and Cuhy5S revealed high homology of tandem repeats between C. hystrix and C. sativus. Intriguingly, we found signal distribution variations of CuhySat2 and CuhySat3 on C. sativus chromosomes. In comparison to their subtelomeric signal distribution on C. hystrix chromosomes, CuhySat3 showed a pericentromeric signal distribution and CuhySat2 showed both subtelomeric and pericentromeric signal distributions on C. sativus chromosomes. This detailed characterization of four C. hystrix tandem repeats significantly widens our knowledge of the C. hystrix chromosome structure, and the observed signal distribution variations will be helpful for understanding the chromosome evolution of Cucumis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-017-2716-6DOI Listing

Publication Analysis

Top Keywords

tandem repeats
28
cucumis hystrix
20
evolution cucumis
16
signal distribution
16
hystrix
12
sativus chromosomes
12
chromosome evolution
12
cucumis
10
tandem
9
differentially amplified
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!