We report a fluorescent carbon nanoparticle (FCN)-based lateral flow biosensor for ultrasensitive detection of DNA. Fluorescent carbon nanoparticle with a diameter of around 15nm was used as a tag to label a detection DNA probe, which was complementary with the part of target DNA. A capture DNA probe was immobilized on the test zone of the lateral flow biosensor. Sandwich-type hybridization reactions among the FCN-labeled DNA probe, target DNA and capture DNA probe were performed on the lateral flow biosensor. In the presence of target DNA, FCNs were captured on the test zone of the biosensor and the fluorescent intensity of the captured FCNs was measured with a portable fluorescent reader. After systematic optimizations of experimental parameters (the components of running buffers, the concentration of detection DNA probe used in the preparation of FCN-DNA conjugates, the amount of FCN-DNA dispensed on the conjugate pad and the dispensing cycles of the capture DNA probes on the test-zone), the biosensor could detect a minimum concentration of 0.4 fM DNA. This study provides a rapid and low-cost approach for DNA detection with high sensitivity, showing great promise for clinical application and biomedical diagnosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5556692 | PMC |
http://dx.doi.org/10.1016/j.bios.2017.06.045 | DOI Listing |
Food Chem
January 2025
Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China. Electronic address:
Deoxynivalenol (DON) is one of the most harmful mycotoxins that poses great health threats to human and animals. Herein, a simple and sensitive magnetic beads-based fluorescent biosensor was successfully prepared for detection of DON in cereals. A stable double-stranded DNA (dsDNA, biotin-sDNA+FAM-cDNA/AP) was formed on the surface of streptavidin-coated magnetic beads (SMBs).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.
Plant viruses pose a significant threat to global agriculture and require efficient tools for their timely detection. We present AutoPVPrimer, an innovative pipeline that integrates artificial intelligence (AI) and machine learning to accelerate the development of plant virus primers. The pipeline uses Biopython to automatically retrieve different genomic sequences from the NCBI database to increase the robustness of the subsequent primer design.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China.
PIWI-interacting RNAs (piRNAs) are a class of small noncoding RNAs associated with PIWI proteins within the male germline, and they play significant roles in maintaining genome stability via the modulation of gene expression. The piRNAs are implicated in the progression of various cancers, but the simultaneous monitoring of multiple piRNAs remains a challenge. Herein, we construct a single-molecule biosensor based on polymerization-transcription-mediated target regeneration for the simultaneous one-pot detection of multiple piRNAs.
View Article and Find Full Text PDFNano Lett
January 2025
Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.
Logical analysis of multiple-miRNA expression information and immediate output of diagnostic results facilitates early cancer detection. In this work, we constructed an isothermal molecular classifier capable of performing computations on multiple miRNAs and directly providing diagnosis results. First, we developed linear-after-the-exponential rolling circle amplification (LATE-RCA), a nearly linear isothermal amplification that does not destroy the original quantitative information about miRNAs.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, U Nemocnice 499/2, 128 00, Prague, Czech Republic.
Background: Glioblastoma is the commonest malignant brain tumor and has a very poor prognosis. Reduced expression of the MGMT gene (10q26.3), influenced primarily by the methylation of two differentially methylated regions (DMR1 and DMR2), is associated with a good response to temozolomide treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!