Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Small membranous vesicles are small closed fragments of membrane. They are released from multivesicular bodies (exosomes) or shed from the surface membrane (microvesicles). They contains various bioactive molecules and their molecular composition varies depending on their cellular origin. Small membranous vesicles have been identified in snake venoms, but the origin of these small membranous vesicles in the venom is controversial. The aim of this study was to verify the origin of the small membranous vesicles in venom of Crotalus durissus terrificus by morphological analyses using electron microscopy. In addition, the protein composition of the vesicles was analyzed by using a proteome approach. The small membranous vesicles present in the venom were microvesicles, since they originated from microvilli on the apical membrane of secretory cells. They contained cytoplasmic proteins, and proteins from the plasma membrane, endoplasmic reticulum (ER), and Golgi membrane. The release of microvesicles may be a mechanism to control the size of the cell membrane of the secretory cells after intense exocytosis. Microvesicle components that may have a role in envenoming include ecto-5'-nucleotidase, a cell membrane protein that releases adenosine, and aminopeptidase N, a cell membrane protein that may modulate the action of many peptides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxicon.2017.06.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!