Vasopressin catalyzes aquaporin-2 phosphorylation at several serine sites in the C-terminal region. Compared with Ser-256 and Ser-269 phosphorylation, the role of Ser-261 phospho-regulation on vasopressin-regulated AQP2 apical translocation is largely unknown. In addition, recent discovery of transcytotic apical delivery of AQP2 made the concept of its intracellular trafficking even more complicated. In this study, we evaluated how intact phospho-AQP2 signals fit with the transcytosis trafficking model in Madin-Darby canine kidney cells. PS256 and pS269 signals were intracellularly detectable in wild-type AQP2 at the beginning of forskolin stimulation (1 min). These phospho-signals were detectable in basolateral membranes even after 10 min of stimulation. AQP2 stably inserted in the apical membrane increased pS269 and decreased pS261 signals. In an NDI-causing mutant P262L-AQP2, in which Ser-261 phospho-regulation is impaired, the pS256 and pS269 signals were detectable in the basolateral membranes with increased pS261 signals after forskolin stimulation. These results suggest that Ser-261 phospho-regulation is involved in pS256- and pS269-mediated AQP2 apical translocation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2017.06.162 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!