Parkinson's disease (PD) is characterized by motor dysfunction, which is preceded by a number of non-motor symptoms including olfactory deficits. Aggregation of α-synuclein (α-syn) gives rise to Lewy bodies in dopaminergic neurons and is thought to play a central role in PD pathology. However, whether amyloid fibrils or soluble oligomers of α-syn are the main neurotoxic species in PD remains controversial. Here, we performed a single intracerebroventricular (i.c.v.) infusion of α-syn oligomers (α-SYOs) in mice and evaluated motor and non-motor symptoms. Familiar bedding and vanillin essence discrimination tasks showed that α-SYOs impaired olfactory performance of mice, and decreased TH and dopamine levels in the olfactory bulb early after infusion. The olfactory deficit persisted until 45days post-infusion (dpi). α- SYO-infused mice behaved normally in the object recognition and forced swim tests, but showed increased anxiety-like behavior in the open field and elevated plus maze tests 20 dpi. Finally, administration of α-SYOs induced late motor impairment in the pole test and rotarod paradigms, along with reduced TH and dopamine content in the caudate putamen, 45 dpi. Reduced number of TH-positive cells was also seen in the substantia nigra of α-SYO-injected mice compared to control. In conclusion, i.c.v. infusion of α-SYOs recapitulated some of PD-associated non-motor symptoms, such as increased anxiety and olfactory dysfunction, but failed to recapitulate memory impairment and depressive-like behavior typical of the disease. Moreover, α-SYOs i.c.v. administration induced motor deficits and loss of TH and dopamine levels, key features of PD. Results point to α-syn oligomers as the proximal neurotoxins responsible for early non-motor and motor deficits in PD and suggest that the i.c.v. infusion model characterized here may comprise a useful tool for identification of PD novel therapeutic targets and drug screening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbr.2017.06.047 | DOI Listing |
Alzheimers Dement
December 2024
Stanford University School of Medicine, Stanford, CA, USA.
Recent advances in biomarkers, enabling the in vivo detection of pathological aggregates of alpha-synuclein (asyn), allow a shift from a clinical to a biological definition of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). The newly proposed "Neuronal alpha-Synuclein Disease (NSD)" is defined by the presence of pathologic neuronal (n-asyn) species detected in vivo (S), irrespective of any specific clinical syndrome. Additional biological anchors include dopaminergic neuronal dysfunction (D).
View Article and Find Full Text PDFSleep Breath
January 2025
Gülhane School of Medicine, Department of Neurology, University of Health Sciences, Ankara, Türkiye.
Background: Our aim was to determine the effect of obstructive sleep apnea syndrome (OSAS) risk on sialorrhea in patients with Parkinson's disease (PD).
Methods: A total of 75 patients with PD (mean age 66.36 ± 8.
Geroscience
January 2025
Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
Background: Rapid eye movement (REM) sleep behavior disorder (RBD) is an early and significant prodromal marker for Parkinson's disease (PD). While the association between RBD and PD has been well-documented, the underlying pathophysiology differentiating PD patients with RBD (PD-RBD +) from those without RBD (PD-RBD-) remained unclear. This study aims to investigate the possible relationship between RBD and striatal dopamine depletion in de novo PD patients.
View Article and Find Full Text PDFNeurol Sci
January 2025
Department of Neurology, Henan University People's Hospital, Zhengzhou, 450003, Henan, China.
Background: Longitudinal cognitive changes in Parkinson's disease (PD) exhibit considerable heterogeneity.Predicting cognitive trajectories in early PD patients can improve prognostic counseling and guide clinical trials.
Methods: This study included 337 early PD patients with 6-year follow-up in the Parkinson's Progression Markers Initiative (PPMI) database.
NPJ Parkinsons Dis
January 2025
Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.
Parkinson's disease arises from the degeneration of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as akinesia, rigidity, and tremor at rest. The non-motor component of Parkinson's disease includes increased neuropathic pain, the prevalence of which is 4 to 5 times higher than the general rate. By studying a mouse model of Parkinson's disease induced by 6-hydroxydopamine, we assessed the impact of dopamine depletion on pain modulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!