Discovery of novel dengue virus entry inhibitors via a structure-based approach.

Bioorg Med Chem Lett

Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION)-CONICET, Godoy Cruz 2390, Ciudad de Buenos Aires, Argentina. Electronic address:

Published: August 2017

Dengue is a mosquito-borne virus that has become a major public health concern worldwide in recent years. However, the current treatment for dengue disease is only supportive therapy, and no specific antivirals are available to control the infections. Therefore, the need for safe and effective antiviral drugs against this virus is of utmost importance. Entry of the dengue virus (DENV) into a host cell is mediated by its major envelope protein, E. The crystal structure of the E protein reveals a hydrophobic pocket occupied by the detergent n-octyl-β-d-glucoside (β-OG) lying at a hinge region between domains I and II, which is important for the low-pH-triggered conformational rearrangement required for fusion. Thus, the E protein is an attractive target for the development of antiviral agents. In this work, we performed prospective docking-based virtual screening to identify small molecules that likely bind to the β-OG binding site. Twenty-three structurally different compounds were identified and two of them had an EC value in the low micromolar range. In particular, compound 2 (EC=3.1μM) showed marked antiviral activity with a good therapeutic index. Molecular dynamics simulations were used in an attempt to characterize the interaction of 2 with protein E, thus paving the way for future ligand optimization endeavors. These studies highlight the possibility of using a new class of DENV inhibitors against dengue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2017.06.049DOI Listing

Publication Analysis

Top Keywords

dengue virus
8
dengue
5
discovery novel
4
novel dengue
4
virus
4
virus entry
4
entry inhibitors
4
inhibitors structure-based
4
structure-based approach
4
approach dengue
4

Similar Publications

Genomics-based timely detection of dengue virus type I genotypes I and V in Uruguay.

Heliyon

November 2024

Laboratorio de Virus Emergentes/reemergentes. Unidad de Virología, Departamento de Laboratorios de Salud Pública, Portugal.

This study details a genomics-based approach for the early detection of mosquito-borne pathogens, marked by Uruguay's first ever complete genomic sequencing of Dengue Virus type I genotypes I and V. This pioneering effort has facilitated the prompt identification of these genotypes within the country, enabling Uruguayan public health authorities to develop timely and effective response strategies. Further integrated into this approach is a climate-driven suitability measure, closely associated with Dengue case reports and indicative of the local climate's role in the virus's transmission in the country within the changing climate context.

View Article and Find Full Text PDF

Dengue's climate conundrum: how vegetation and temperature shape mosquito populations and disease outbreaks.

BMC Public Health

January 2025

Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand.

Introduction: Dengue, a prevalent mosquito-borne viral disease in tropical regions, is influenced by environmental factors such as rainfall, temperature, and urbanization. This study aims to assess the effects of microclimate, vegetation, and Aedes species distribution on dengue transmission in distinct hotspot and non-hotspot locations.

Methods: This cohort study was conducted in two sites within Selangor, Malaysia: a recurrent dengue hotspot and a non-dengue hotspot.

View Article and Find Full Text PDF

Dengue virus IgG and neutralizing antibody titers measured with standard and mature viruses are protective.

Nat Commun

January 2025

Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.

The standard dengue virus (DENV) neutralization assay inconsistently predicts dengue protection. We compare how IgG ELISA, envelope domain III (EDIII), or non-structural protein 1 (NS1) binding antibodies, and titers from plaque reduction neutralization tests (PRNTs) using standard and mature viruses are associated with dengue. The ELISA measures IgG antibodies that bind to inactivated DENV1-4.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) emerged as critical contributors to the pathogenesis of vascular endothelial barrier dysfunction during the inflammatory response to infection. However, the contribution of circulating EVs to modifying endothelial function during dengue virus infection remains unclear. In this study, we showed that severe dengue patients' plasma-derived EV (SD-EV) were found to carry elevated levels of different protein cargos, e.

View Article and Find Full Text PDF

Octahedral small virus-like particles of dengue virus type 2.

J Virol

December 2024

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.

Unlabelled: Flavivirus envelope (E) and precursor M (prM) proteins, when ectopically expressed, assemble into empty, virus-like particles (VLPs). Cleavage of prM to M and loss of the pr fragment converts the VLPs from immature to mature particles, mimicking a similar maturation of authentic virions. Most of the VLPs obtained by prM-E expression are smaller than virions; early, low-resolution cryo-EM studies suggested a simple, 60-subunit, icosahedral organization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!