Field data analyses have shown that small female, obese, and/or older occupants are at increased risks of death and serious injury in motor-vehicle crashes compared with mid-size young men. The current adult finite element (FE) human models represent occupants in the same three body sizes (large male, mid-size male, and small female) as those for the contemporary adult crash dummies. Further, the time needed to develop an FE human model using the traditional method is measured in months or even years. In the current study, an improved regional mesh morphing method based on landmark-based radial basis function (RBF) interpolation was developed to rapidly morph a mid-size male FE human model into different geometry targets. A total of 100 human models with a wide range of human attributes were generated. A pendulum chest impact condition was applied to each model as an initial assessment of the resulting variability in response. The morphed models demonstrated mesh quality similar to the baseline model. The peak impact forces and chest deflections in the chest pendulum impacts varied substantially with different models, supportive of consideration of population variation in evaluating the occupant injury risks. The method developed in this study will enable future safety design optimizations targeting at various vulnerable populations that cannot be considered with the current models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2017.06.015 | DOI Listing |
Emerg Microbes Infect
January 2025
HIV/AIDS Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy.
The first evidence that Orthopoxvirus induced the expansion and the recall of effector innate Vδ2T-cells was described in a macaque model. Although, an engagement of αβ T-cells specific response in patients infected with human monkeypox (Mpox) was demonstrated, little is known about the role of γδ T-cells during Mpox infection. IFN-γ-producing γδ T-cells in the resistance to poxviruses may a key role in inducing a protective type 1 memory immunity.
View Article and Find Full Text PDFTrans R Soc Trop Med Hyg
January 2025
Research Center for Care and Control of Infectious Disease, Universitas Padjadjaran, Bandung 45363, Indonesia.
Background: Certain micronutrient levels have been associated with the risk of developing TB disease. We explored the possible association of selected at-risk micronutrient levels with the development of Mycobacterium tuberculosis (M.tb) infection.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).
Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.
Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.
Aliment Pharmacol Ther
January 2025
Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France.
Background: Association between dietary factors and the risk of developing inflammatory bowel disease (IBD) has been studied extensively. However, identification of deleterious dietary patterns merits further study.
Aim: To investigate the risk of developing Crohn's disease (CD) and ulcerative colitis (UC) according to the inflammatory score of the diet (ISD) in the multinational European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.
Aging Cell
January 2025
Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.
Declines in lysosomal acidification and function with aging are observed in organisms ranging from yeast to humans. V-ATPases play a central role in organelle acidification, and V-ATPase activity is regulated by reversible disassembly in many different settings. Using the yeast Saccharomyces cerevisiae as a replicative aging model, we demonstrate that V-ATPases disassemble into their V and V subcomplexes in aging cells, with release of V subunit C (Vma5) from the lysosome-like vacuole into the cytosol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!