We developed a novel in situ chamber to investigate the relationship between gas hydrate crystal morphology and gas permeability in a glass micromodel that mimics marine sediment. This high-pressure experimental chamber was able to use a thin glass cell without high pressure resistance. The formation of methane hydrate (MH) in the glass micromodel was observed in situ. We investigated the relationship between the MH growth rate and the degree of super cooling ΔT. In addition, we successfully performed the in situ observation of both hydrate morphology and gas permeability measurement simultaneously.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4989402DOI Listing

Publication Analysis

Top Keywords

morphology gas
12
gas permeability
12
glass micromodel
12
situ chamber
8
methane hydrate
8
hydrate crystal
8
crystal morphology
8
thin glass
8
situ
4
chamber built
4

Similar Publications

Clarifying the pore-throat size and pore size distribution of tight sandstone reservoirs, quantitatively characterizing the heterogeneity of pore-throat structures, is crucial for evaluating reservoir effectiveness and predicting productivity. Through a series of rock physics experiments including gas measurement of porosity and permeability, casting thin sections, scanning electron microscopy, and high-pressure mercury injection, the quality of reservoir properties and microscopic pore-throat structure characteristics were systematically studied. Combined with fractal geometry theory, the effects of different pore throat types, geometric shapes and scale sizes on the fractal characteristics and heterogeneity of sandstone pore throat structure are clarified.

View Article and Find Full Text PDF

Chemical nanosensors based on nanoparticles of tin dioxide and graphene-decorated tin dioxide were developed and characterized to detect low NO concentrations. Sensitive layers were prepared by the drop casting method. SEM/EDX analyses have been used to investigate the surface morphology and the elemental composition of the sensors.

View Article and Find Full Text PDF

Among the most selective catalytic systems for the hydroisomerization of C-paraffins, catalytic systems based on SAPO-11 are quite promising. In order to increase the activity and selectivity of these bifunctional catalysts, it is necessary to reduce the diffusion restrictions for the reacting molecules and their products in the microporous structure of SAPO-11 by reducing the crystal size. To solve this problem, we have studied the influence of different templates (diethylamine, dipropylamine, diisopropylamine, and dibutylamine) on the physicochemical properties of reaction gels and SAPO-11 silicoaluminophosphates during their crystallization.

View Article and Find Full Text PDF

Smart and advanced nanocomposites of rGO-based Ni-doped CoO/TiO for next-level photocatalysis and gas sensing application.

Environ Sci Pollut Res Int

December 2024

Advanced Materials Research Laboratory, Department of Physics, Dr. Babasaheb Ambedkar, Marathwada University, Chhatrapati Sambhajinagar, 431004, M.S, India.

The rGO-based 5% Ni-doped CoO/TiO (GNCT) p-n heterojunction nanocomposite was synthesized using hydrothermal method. The resulting nanocomposite's morphology, structure, surface area, elemental composition, electrical and optical properties were thoroughly examined using a variety of techniques. The GNCT nanomaterial achieved an impressive 99.

View Article and Find Full Text PDF

Novel metal oxides partially derived perovskite-structured hydroxides for room temperature trace NO gas sensors under UV irradiation.

Talanta

December 2024

Key Laboratory of Applied Chemistry and Nanotechnology at University of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China. Electronic address:

Perovskite-structured materials are used as gas-sensitive materials due to their wide bandgap and controllable morphology, but large initial resistance and low response limit their development. In this work, ZnSn(OH)/ZnO composites derived from ZnO were synthesized by hydrothermal method. The gas-sensitive results show that all sensors show significantly improved response to NO under UV irradiation compared with without UV irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!